Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnetic Nanoparticles Remove Ovarian Cancer Cells from the Abdominal Cavity

Abstract:
A major complicating factor in the treatment of ovarian cancer is that malignant cells are often shed into the patient's abdominal cavity. These cells can then spread to other tissues, seeding new tumors that make effective therapy difficult. To overcome this problem, researchers at the Georgia Institute of Technology created magnetic nanoparticles that can selectively bind to and remove ovarian tumor cells from abdominal cavity fluid. John F. McDonald led the research team that reported their work in the journal Nanomedicine.

Magnetic Nanoparticles Remove Ovarian Cancer Cells from the Abdominal Cavity

Bethesda, MD | Posted on July 19th, 2010

Research by other investigators had identified a protein known as EphA2 as a highly selective marker for free-floating ovarian cancer cells. Dr. McDonald and his collaborators coated magnetic cobalt-iron oxide nanoparticles with a molecular mimic of the natural ligand for this protein, a molecule known as ephrin-A1, to serve as a trap for ovarian cancer cells floating in ascites fluid, the liquid found in the intestinal cavity. The idea behind this approach is that the nanoparticles could be added to ascites fluid and then trapped with a magnetic, removing any ovarian cancer cells that had bound to the eprhin-A1 mimic.

They first tested their nanoparticles using ascites fluid from mice with human ovarian tumors and found that they could trap free-floating tumor cells using magnetic separation. They then repeated this experiment using ascites fluid obtained from four women with ovarian cancer, and again showed that they could remove all of the EphA2-positive cells from the intestinal fluid samples. The researchers suggest that these nanoparticles could be used in a system that removes ascites fluid from the intestinal cavity, using a relatively non-invasive method akin to dialysis, in conjunction with standard ovarian cancer therapy.

This work is detailed in a paper titled, "Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles." An abstract of this paper is available at the journal's Web site.

View abstract www.nanomedjournal.com/article/S1549-9634(09)00255-X/abstract

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project