Home > Press > Study measures single-molecule machines in action
![]() |
Rotaxane, showing movement of ring to different stations along the rod. |
Abstract:
In the development of future molecular devices, new display technologies, and "artificial muscles" in nanoelectromechanical devices, functional molecules are likely to play a primary role.
By Mike Rodewald
Rotaxanes, one family of such molecules, are tiny, mechanically interlocked structures that consist of a dumbell-shaped molecule whose rod section is encircled by a ring. These structures behave as molecular "machines," with the ring moving along the rod from one station to another when stimulated by a chemical reaction, light or acidity.
To realize the potential of these molecular machines, however, it is necessary to understand and to measure their function at the nanoscale. Previous methods for observing their operation have involved chemical measurements in solution and studying collections of them attached to surfaces, but neither has provided an accurate picture of their function in environments that are relevant to molecular-device operation.
Now, a multidisciplinary team of researchers from UCLA, Northwestern University, UC Merced, Pennsylvania State University and Japan has succeeded in observing single-molecule interactions of bistable rotaxanes functioning in their native environment.
The team's findings are published in the current edition of the journal ACS Nano.
Led by Paul Weiss from UCLA and Fraser Stoddart from Northwestern University, the team developed a molecular design that firmly attached rotaxanes to a surface, enabling them to be individually examined in their native environment by a scanning tunneling microscope (STM). Using this technology, the researchers were able to record station changes by the rotaxanes' rings along their rods in response to electrochemical signals.
Previously, rotaxanes had to be grouped for study because of their mobility and flexibility when attached to surfaces. And because STM instruments utilize an atomically thin tip to feel out nanoscale surfaces ¯ in much the same way a blind person reads Braille ¯ the rotaxanes' flexible nature made it difficult to study them individually. The research team's molecular design, however, helped significantly reduce this flexibility.
The STM developed by the team enables much more detailed studies of molecular machines, leading to greater understanding of how they interact with their neighbors and how they might work together in nanoelectromechanical devices.
Paul Weiss, distinguished professor of chemistry and biochemistry, holds UCLA's Fred Kavli Chair in Nanosystems Sciences and is director of the California NanoSystems Institute (CNSI) at UCLA. Fraser Stoddart is the Board of Trustees Professor of Chemistry and director of the Center for the Chemistry of Integrated Systems (CCIS) at Northwestern University.
The work was funded by the National Science Foundation, the Semiconductor Research Corporation and the Kavli Foundation.
####
About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.
For more information, please click here
Contacts:
Media Contacts
Jennifer Marcus
310-267-4839
Mike Rodewald
310-267-5883
Copyright © California NanoSystems Institute at UCLA
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
NEMS
IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018
UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018
Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018
One string to rule them all April 17th, 2018
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |