Home > Press > SEMATECH Makes Important Advances in Power and Performance Features for Next-Generation IC Devices
Abstract:
SEMATECH technologists outline progress on innovative materials and processes for CMOS and emerging technologies
SEMATECH engineers reported on materials and device structures that will define next generation CMOS and non-CMOS technologies at the 2010 Symposia on VLSI Technology and Circuits, June 15-18, at the Hilton Hawaiian Village in Honolulu, Hawaii.
Researchers at SEMATECH are focusing on techniques for simultaneously enhancing performance and reducing power consumption to enable the extension of CMOS logic and memory technologies. SEMATECH papers at VLSI, selected from hundreds of submissions, outlined new materials, processes and concepts, and described the way current semiconductor technologies can benefit from performance-enhancing features for future scaling needs.
"Identifying the optimum processes, materials, and device structures, and how they function when combined as a module, is of critical importance in pushing conventional CMOS scaling to its limits and paving the way for emerging beyond CMOS technologies," said Raj Jammy, SEMATECH vice president of materials and emerging technologies. "The research that was presented at the VLSI symposium demonstrates SEMATECH's leadership and innovative thinking as we help the industry develop future generations of low power, high performance IC devices that are both manufacturable and affordable."
SEMATECH front-end process technologists reported the following technical advances:
* Investigating low contact resistance FinFETs with SOI substrates as a promising device structure for 22 nm and beyond: SEMATECH reported on a method to reduce parasitic resistance, a key issue affecting FinFET performance. While future narrow fin geometries reduce the area available for current flow through the silicon/silicide interface, reducing the interface barrier height in a simple and manufacturable way can realize significant performance improvements.
* Thoroughly exploring orientation and strain to enable a combination that simultaneously provides strong NMOS and PMOS: SEMATECH demonstrated a high mobility SiGe (110) channel CMOS with performance-boosting techniques. SEMATECH's work advances high mobility channel CMOS technology with monolithic integration on a single SiGe (110)<110> channel orientation.
* Significant improvements in tunnel-FET transistors: In a project funded by DARPA and in collaboration with Prof. Chenming Hu of the University of California, Berkeley, SEMATECH researchers have enhanced this new class of devices aimed at lowering power dissipation in semiconductor devices. Tunneling transistors may be the answer to overcome the constraints posed by power dissipation in conventional CMOS scaling. SEMATECH reported an industry breakthrough—46mV/dec of sub-threshold swing—an important first step in realizing tunneling transistors.
In a short course series entitled, "Emerging Logic and Memory Technologies for VLSI Implementation," Sitaram Arkalgud, director of SEMATECH's 3D interconnect program, and Prashant Majhi, program manager of the CMOS scaling effort, presented on 3D interconnects and high mobility non-silicon channels. Specifically, Arkalgud discussed process development, module integration, and the overall manufacturability outlook for via-mid through-silicon vias (TSVs), a front-end process that allows the interconnect length to be shortened as well as the bandwidth between the stacked chips to be increased, resulting in lower power, higher performance, and increased device density. Dr. Majhi described the critical need for high mobility non-Si channels to enhance performance and reduce the power dissipation in future CMOS devices. Furthermore, he outlined breakthrough results from SEMATECH's FEP research team, which is leading a multi-pronged effort to demonstrate the feasibility of integrating high mobility III-V channel materials on a silicon platform and developing the infrastructure needed by the industry to implement such devices at future nodes.
In conjunction with VLSI, SEMATECH and IMEC co-hosted an invitational workshop entitled "High Mobility Channels" on June 17. In a series of presentations and panel discussions, the workshop featured experts from industry and academia debating the challenges and opportunities—from device, process, tooling, and metrology perspectives—related to large-scale III-V manufacturing on silicon in a CMOS environment. Majhi shared highlights of SEMATECH's efforts and its success in developing a fully functional test vehicle in a 200 mm flow. Several other industry experts and leading faculty researchers presented the results of their work. The panel of experts and audience concluded that III-V on Si is a next step in the evolution of Si CMOS and perhaps is necessary to keep power down in future generation chips.
The Symposium on VLSI Technology and Circuits is one of many industry forums SEMATECH uses to collaborate with scientists and engineers from corporations, universities, and other research institutions that are key to SEMATECH's ambitious research endeavors. It is sponsored by the IEEE Electron Devices Society and Solid-State Circuits Society and the Japan Society of Applied Physics, in cooperation with the Institute of Electronics, Information and Communication Engineers.
####
About SEMATECH
For 20 years, SEMATECH® (www.sematech.org), the international consortium of leading semiconductor manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Today, we continue accelerating the next technology revolution with our nanoelectronics and emerging technology partners.
For more information, please click here
Contacts:
Erica McGill
SEMATECH | Media Relations
257 Fuller Road | Suite 2200 | Albany, NY | 12203
o: 518-649-1041 | m: 518-487-8256
Copyright © SEMATECH
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||