Home > Press > First graphene touchscreen
The researchers built up a graphene layer on copper foil and then used rollers to transfer the graphene to a polymer support and then onto a final substrate. © Nature Nanotechnology |
Abstract:
Researchers in Korea and Japan have fabricated films of graphene - planar sheets of carbon one atom thick - measuring tens of centimetres. The researchers engineered these large graphene films into transparent electrodes, which were incorporated into touchscreen panel devices.
By Simon Hadlington
The new work represents another milestone in the astonishing technological advance of graphene from its initial isolation only a few years ago. Experts predict that graphene will be found in consumer products within a couple of years.
The team, led by Jong-Hyun Ahn and Byung Hee Hong of Sungkyunkwan University, Korea, grew a graphene layer on copper foil by chemical vapour deposition (CVD) using a previously demonstrated technique.
Using a roller, the graphene face can then be pressed against an adhesive polymer support and the copper etched away, leaving the graphene film attached to the polymer. The graphene can then be pressed against a final substrate - such as polyethylene terephthalate (PET) - again using rollers, and the polymer adhesive released by heating. Subsequent layers of graphene can then be added in a similar way.
The researchers used this technique to create a rectangular graphene film measuring 30 inches (76 cm) in the diagonal. The graphene was doped by treating with nitric acid and in this form the graphene sheet can act as a large, transparent electrode and was demonstrated to work in a touchscreen device.
Typically, transparent electrodes used in such applications are made from indium tin oxides (ITO). The researchers say that the graphene electrode has better transparency and is tougher. 'The price of indium has increased by a few times over the past decades and this will be more serious as markets for display and solar cells expand,' says Ahn.'In addition, oxide materials like ITO are usually fragile and weak.' Because of this, ITO-based touchscreens have a finite life span, whereas, says Ahn, a graphene-based screen should last essentially forever.
'In addition, the graphene production needs just a tiny amount of carbon sources without any rare materials, and the copper substrate is recyclable, so it is much more environmentally friendly than ITO production.'
Andre Geim of the University of Manchester in the UK, who is widely credited as being the founding father of modern graphene science having discovered isolated graphene around five years ago, says the new work demonstrates the astonishing rapidity with which graphene technology has advanced. 'This clearly shows that graphene is no longer wishful thinking as far as industrial applications go. People have gone from lab-scale to industrial-scale production unbelievably quickly. Within two years we will have consumer products.'
####
For more information, please click here
Copyright © Royal Society of Chemistry
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Videos/Movies
New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022
Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||