Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A New Approach to Finding and Removing Defects in Graphene

Removing impurities on the atomic scale
 Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated.  Credit: Mike Cohea/Brown University
Removing impurities on the atomic scale Engineering professor Vivek Shenoy (right) and graduate student Akbar Bagri have explored the atomic configuration of graphene oxide, showing how defects in graphene sheets can be located and treated. Credit: Mike Cohea/Brown University

Abstract:
In a paper in Nature Chemistry, Vivek Shenoy and colleagues pinpointed noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. The researchers also propose how to make that technique more efficient by precisely applying hydrogen - rather than heat - to remove the impurities.

A New Approach to Finding and Removing Defects in Graphene

Providence, RI | Posted on June 8th, 2010

Graphene, a carbon sheet that is one-atom thick, may be at the center of the next revolution in material science. These ultrathin sheets hold great potential for a variety of applications from replacing silicon in solar cells to cooling computer chips.

Despite its vast promise, graphene and its derivatives "are materials people understand little about," said Vivek Shenoy, professor of engineering at Brown University. "The more we can understand their properties, the more (technological) possibilities that will be opened to us."

Shenoy and a team of U.S. researchers have gained new insights into these mysterious materials. The team, in a paper in Nature Chemistry, pinpoints the atomic configurations of noncarbon atoms that create defects when graphene is produced through a technique called graphene-oxide reduction. Building from that discovery, the researchers propose how to make that technique more efficient by outlining precisely how to apply hydrogen — rather than heat — to remove impurities in the sheets.

The sheets produced by graphene-oxide reduction are two-dimensional, honeycomb-looking planes of carbon. Most of the atoms in the lattice are carbon, which is what scientists want. But interwoven in the structure are also oxygen and hydrogen atoms, which disrupt the uniformity of the sheet. Apply enough heat to the lattice, and some of those oxygen atoms bond with hydrogen atoms, which can be removed as water. But some oxygen atoms are more stubborn.

Shenoy, joined by Brown graduate student Akbar Bagri and colleagues from Rutgers University and the University of Texas-Dallas, used molecular dynamic simulations to observe the atomic configuration of the graphene lattice and figure out why the remaining oxygen atoms remained in the structure. They found that the holdout oxygen atoms had formed double bonds with carbon atoms, a very stable arrangement that produces irregular holes in the lattice.

The oxygen atoms that form double bonds with carbon "have very low energy," Shenoy said. "They're unreactive. It's hard to get them out."

Now that they understand the configuration of the resistant oxygen atoms in the graphene, the researchers say adding hydrogen atoms in prescribed amounts and at defined locations is the best way to further reduce the graphene oxide. One promising technique, they write in the paper, is to introduce hydrogen where the oxygen atoms have bonded with the carbon atoms and formed the larger holes. The oxygen and hydrogen should pair up (as hydroxyls) and leave the lattice, in essence "healing the hole," Shenoy said.

Another approach is to remove the oxygen impurities by focusing on the areas where carbonyls — carbon atoms that are double-bonded to oxygen atoms — have formed. By adding hydrogen, the researchers theorize, the oxygen atoms can be peeled away in the form of water.

The researchers next plan to experiment with the hydrogen treatment techniques as well as to investigate the properties of graphene oxide "in its own right," Shenoy said.

The research was funded by the National Science Foundation and the Semiconductor Research Corporation's Nanotechnology Research Initiative. Other authors on the paper include Cecilia Mattevi and Manish Chhowalla from Rutgers (both now at Imperial College in London), Muge Acik and Yves Chabal from the University of Texas-Dallas.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project