Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Mysterious quantum forces unraveled

New computational techniques developed at MIT confirmed that the complex quantum effects known as Casimir forces would cause tiny objects with the shapes shown here to repel each other rather than attract. Image courtesy of Alejandro Rodriguez.
New computational techniques developed at MIT confirmed that the complex quantum effects known as Casimir forces would cause tiny objects with the shapes shown here to repel each other rather than attract. Image courtesy of Alejandro Rodriguez.

Abstract:
MIT researchers find a way to calculate the effects of Casimir forces, offering a way to keep micromachines' parts from sticking together.

By Larry Hardesty, MIT News Office

Mysterious quantum forces unraveled

Cambridge, MA | Posted on May 12th, 2010

Discovered in 1948, Casimir forces are complicated quantum forces that affect only objects that are very, very close together. They're so subtle that for most of the 60-odd years since their discovery, engineers have safely ignored them. But in the age of tiny electromechanical devices like the accelerometers in the iPhone or the micromirrors in digital projectors, Casimir forces have emerged as troublemakers, since they can cause micromachines' tiny moving parts to stick together.

MIT researchers have developed a powerful new tool for calculating the effects of Casimir forces, with ramifications for both basic physics and the design of microelectromechanical systems (MEMS). One of the researchers' most recent discoveries using the new tool was a way to arrange tiny objects so that the ordinarily attractive Casimir forces become repulsive. If engineers can design MEMS so that the Casimir forces actually prevent their moving parts from sticking together — rather than causing them to stick — it could cut down substantially on the failure rate of existing MEMS. It could also help enable new, affordable MEMS devices, like tiny medical or scientific sensors, or microfluidics devices that enable hundreds of chemical or biological experiments to be performed in parallel.

Ghostly presence

Quantum mechanics has bequeathed a very weird picture of the universe to modern physicists. One of its features is a cadre of new subatomic particles that are constantly flashing in and out of existence in an almost undetectably short span of time. (The Higgs boson, a theoretically predicted particle that the Large Hadron Collider in Switzerland is trying to detect for the first time, is expected to appear for only a few sextillionths of a second.) There are so many of these transient particles in space — even in a vacuum — moving in so many different directions that the forces they exert generally balance each other out. For most purposes, the particles can be ignored. But when objects get very close together, there's little room for particles to flash into existence between them. Consequently, there are fewer transient particles in between the objects to offset the forces exerted by the transient particles around them, and the difference in pressure ends up pushing the objects toward each other.

In the 1960s, physicists developed a mathematical formula that, in principle, describes the effects of Casimir forces on any number of tiny objects, with any shape. But in the vast majority of cases, that formula remained impossibly hard to solve. "People think that if you have a formula, then you can evaluate it. That's not true at all," says Steven Johnson, an associate professor of applied mathematics, who helped develop the new tools. "There was a formula that was written down by Einstein that describes gravity. They still don't know what all the consequences of this formula are." For decades, the formula for Casimir forces was in the same boat. Physicists could solve it for only a small number of cases, such as that of two parallel plates. Then, in 2006, came a breakthrough: MIT Professor of Physics Mehran Kardar demonstrated a way to solve the formula for a plate and a cylinder.

Calculating the incalculable

In a paper appearing this week in Proceedings of the National Academy of Sciences, Johnson, physics PhD students Alexander McCauley and Alejandro Rodriguez (the paper's lead author), and John Joannopoulos, the Francis Wright Davis Professor of Physics, describe a way to solve Casimir-force equations for any number of objects, with any conceivable shape.

The researchers' insight is that the effects of Casimir forces on objects 100 nanometers apart can be precisely modeled using objects 100,000 times as big, 100,000 times as far apart, immersed in a fluid that conducts electricity. Instead of calculating the forces exerted by tiny particles flashing into existence around the tiny objects, the researchers calculate the strength of an electromagnetic field at various points around the much larger ones. In their paper, they prove that these computations are mathematically equivalent.

For objects with odd shapes, calculating electromagnetic-field strength in a conducting fluid is still fairly complicated. But it's eminently feasible using off-the-shelf engineering software.

"Analytically," says Diego Dalvit, a specialist in Casimir forces at the Los Alamos National Laboratory, "it's almost impossible to do exact calculations of the Casimir force, unless you have some very special geometries." With the MIT researchers' technique, however, "in principle, you can tackle any geometry. And this is useful. Very useful."

Since Casimir forces can cause the moving parts of MEMS to stick together, Dalvit says, "One of the holy grails in Casimir physics is to find geometries where you can get repulsion" rather than attraction. And that's exactly what the new techniques allowed the MIT researchers to do. In a separate paper published in March, physicist Michael Levin of Harvard University's Society of Fellows, together with the MIT researchers, described the first arrangement of materials that enable Casimir forces to cause repulsion in a vacuum.

Dalvit points out, however, that physicists using the new technique must still rely on intuition when devising systems of tiny objects with useful properties. "Once you have an intuition of what geometries will cause repulsion, then the [technique] can tell you whether there is repulsion or not," Dalvit says. But by themselves, the tools cannot identify geometries that cause repulsion.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanobiotechnology

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Quantum nanoscience

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project