Home > Press > Materials Research Advances Reliability Of Faster Smart Sensors
Abstract:
In military and security situations, a split second can make the difference between life and death, so North Carolina State University's development of new "smart sensors" that allow for faster response times from military applications is important. Equally important is new research from NC State that will help ensure those sensors will operate under extreme conditions - like those faced in Afghanistan or elsewhere.
By Matt Shipman
"We've taken a sensor material called vanadium oxide and integrated it with a silicon chip," says Dr. Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and co-author of the research. "Normally sensors are hardwired to a computer. But now the sensor is part of the computer chip itself. The advantage is that now you have a smart sensor that can sense, manipulate and respond to information."
For example, such smart sensors allow for the development of infrared sensors that can respond more quickly in military or security applications.
The creation of these smart sensors is possible due to Narayan's discovery of "domain matching epitaxy." This model allows the creation of single, defect-free crystal layers of different materials - which amplify the transmission of electronic signals between those materials.
New findings presented by a team of NC State researchers (published in Applied Physics Letters and Journal of Applied Physics) now describe how vanadium oxide sensors work in conjunction with the silicon chips to which they are attached. Understanding how these sensors function gives researchers the ability to improve the reliability of these smart sensors, and account for variable conditions the sensors may be exposed to, such as various temperatures and pressures a sensor may face in Afghanistan or Iraq.
The research, which was funded by the National Science Foundation, was co-authored by Narayan, Dr. Roger Narayan, a professor of biomedical engineering at NC State, and NC State Ph.D. students Tsung Han Yang, Ravi Aggarwal, A. Gupta, and H. Zhou. The research was presented April 7 at the 2011 Materials Research Society Spring Meeting in San Francisco. The paper, titled "Mechanism of Semiconductor Metal Transition of Vanadium Oxide Thin Films," won the First Prize in the MRS Symposium N: Functional Oxide Nanostructures and Heterostructures.
NC State's Department of Materials Science and Engineering is part of the university's College of Engineering. The Department of Biomedical Engineering is a joint department under both NC State's College of Engineering and the University of North Carolina at Chapel Hill.
####
For more information, please click here
Contacts:
Matt Shipman
News Services
919.515.6386 
Dr. Jay Narayan
919.515.7874
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Academic/Education
    Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
    Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Sensors
    Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||