Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New, high-strength and lightweight nacre-mimetic material applicable to large-scale industrial processes

Abstract:
The Molecular Materials Research Group within the Department of Applied Physics in collaboration with VTT and Royal Institute of Technology shows the first example of light-weight but mechanically strong nanocomposite material mimicking the nacreous shells that allows upscaling for industrial processes.

New, high-strength and lightweight nacre-mimetic material applicable to large-scale industrial processes

Finland | Posted on March 24th, 2010

The materials are expected to be feasible in applications where lightweight but strong materials allow particular benefits, e.g. in telecommunication, aerospace applications, and vehicles.

Nacreous shell has attracted materials scientists for a long time, due to its lightweight but strong structure. Mimicking nacre, the new material consists of alternating inorganic nanoscale platelets which are glued by polymers, and the materials self-assemble spontaneously in a one-step process to form layered structures, using for example paper-making process, painting, and spreading.

The new invention is based on a deep understanding of self-assembly processes in material science, said Andreas Walther, PhD., and Academy Professor Olli Ikkala who lead the project. "We have used self-assemblies and hierarchies already long in other types of materials to achieve functional properties. A good example of self-assembly is given by proteins whose chains contain in a delicate manner the information how to assemble as functional structures."

Different nanocomposite materials have already been explored extensively. However, it has remained a challenge to achieve drastically improved properties or concepts that are easily upscalable for large-scale technological applications.

Lightweight and strong materials have a number of applications

The new material has attracted a wide interest. The properties are easily tunable. At present it shows a tensile modulus of 45 GPa, the tensile strength of 250 MPa, it has very low gas permeation, and it shows very good properties as a thermal shield upon exposed fire. The material has been developed based on initial funding of Academy of Finland, and continued by UPM, a global forest product company, who has also a patent pending on the concept.

"We believe that the material can be attractive for mobile technologies and even for flexible electronics as a support and barrier material," said Walther and Ikkala.

Upon further tailoring of the materials and the processes, applications related to vehicles and aerospace are expected to become feasible. The lightweight but strong materials can lead to energy savings.

Nature inspires novel high tech materials

The new material is an example of biomimetics, which aims to mimic the most attractive materials in nature, but in simpler terms.

The materials scientists are fascinated by the delicacy of natural materials. The properties have been developed due to the lengthy process of evolution and in some cases extraordinary properties relevant to technology can be identified. In addition to nacreous shells, the materials scientists explore for example mimics for silk, jaws, and bones.

The results have been published in Nano Letters (DOI: 10.1021/nl1003224)pubs.acs.org/doi/abs/10.1021/nl1003224

see also: www.technologyreview.com/computing/24828/page1/.

####

About Aalto University
Established in 2010, the Aalto University is a new university with centuries of experience. The Aalto University is a created from the merger of three Finnish universities: The Helsinki School of Economics, Helsinki University of Technology and The University of Art and Design Helsinki. The three schools of the Aalto University - the School of Economics, the School of Art and Design and the School of Science and Technology are all leading and renowned institutions in their respective fields and in their own right.

The combination of three universities opens up new possibilities for strong multi-disciplinary education and research. The new university's ambitious goal is to be one of the leading institutions in the world in terms of research and education in its own specialised disciplines.

For more information, please click here

Contacts:
Andreas Walther, PhD

+358 50 5113192

Olli Ikkala
Academy Professori

+358 50 4100454

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Industrial

Quantum interference in molecule-surface collisions February 28th, 2025

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project