Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Intel teams up with Glasgow University to facilitate the design of future nanoscale memories

Abstract:
A European taskforce has been set up to investigate how to design the next generation of tera-scale computer memory systems.

Intel teams up with Glasgow University to facilitate the design of future nanoscale memories

EU | Posted on February 22nd, 2010

Within the next decade microchips are expected to incorporate billions of transistors - the tiny on-off switches that enable circuits to process and store data - creating ultra-powerful computer systems that can process trillions of bytes (terabytes) of data per second.

However, as transistors get smaller, so tiny variations within their structures affect their performance and thus the reliability of the whole microchip. It is a problem which presents a huge barrier to the continued scaling of microchips and the development of ever-more powerful computers.

In order to overcome this obstacle the European Commission (EC) has established a taskforce to come up with new ways of designing future microchip memories which take into account the variability and unreliability of nano-scale transistors.

The 'Tera-scale Reliable Adaptive Memory Systems' (TRAMS) consortium includes: Intel Corporation Iberia, Interuniversitair Micro-Elektronica Centrium vzw, the University of Glasgow, and the Universitat Politecnica de Catalunya, and is financed through the EU's Framework Programme 7 (FP7) science research fund.

Professor Asen Asenov, of the Department of Electronic and Electrical Engineering is leading the University of Glasgow's involvement at the heart of the project. He is a world-leading authority on the variability of Complementary Metal-Oxide Semiconductors (CMOS) transistors and microchips.

He said: "Tera-scale computing will transform the power, performance and functionality of personal computers, phones and other electronic devices as well as large computing facilities such as data centres. "However, if we are to continue to shrink the size of transistors in order to develop such powerful circuits, we need fundamentally new approaches to circuit and system design that can take account of the variability within transistors.

"We hope this project will result in new chip design paradigms for building reliable memory systems out of unreliable nano-scale components cheaply and effectively, heralding the era of tera-scale computing." Central to the project is simulation software developed by Prof Asenov in an earlier GBP5.3m Engineering and Physical Sciences Research Council eScience pilot project called NanoCMOS.

The NanoCMOS simulations use grid computing, which utilises the processor power of thousands of linked computers, to simulate how hundreds of thousands of transistors, each with their own individual characterstics, will function within a circuit.

Prof Asenov and the University of Glasgow is setting up a company called Gold Standard Simulations to exploit this technology which will be critical to the work of the TRAMS project, with all device design and simulation work being conducted at Glasgow.

In investigating design possibilities for future microchips, the team will focus on future generation of CMOS microchip technologies - which comprise transistors less than 16 nanometres in size (by comparison a human hair is around 100,000 nanometres wide). The transistors will be design and simulated exclusively by Glasgow.

The TRAMS consortium will also consider what are known as 'Beyond CMOS' technologies; nanowire transistors, quantum devices, carbon nanotubes and molecular electronics, which are expected to be as small as five nanometres.

The project is expected to last three years.

Notes: The Universitat Politecnica de Catalunya (UPC), Barcelona Tech, the Spanish technical university located in Barcelona is the project coordinator. The UPC is one of the main technical universities in Spain. It is specialized in the areas of engineering, science and architecture. It has around 30,000 undergraduate students and 4,000 graduate students (Master and Doctorate). The UPC participation in the TRAMS project is through the research groups "High Performance Integrated Circuits and Systems Design" (HIPICS) and "Architecture and Compilers" (ARCO) in the Electronics Engineering and Computer Architecture Departments respectively.

The University of Glasgow (UOG), The University of Glasgow is one of the top 20 research led universities in the UK from the Russell Group and one of the top 100 universities worldwide. It was established in 1451 and has 1500 undergraduate and 4900 postgraduate students. The Device Modeling Group from the Department of Electronics and Electrical Engineering led by Professor Asen Asenov represents the University in the TRAMS consortium.

####

About Intel
Intel is the world's largest chip maker, and a leading manufacturer of computer, networking and communications products. Intel Barcelona Research Centre (IBRC) is one of the Intel Labs. Its activities focus on research in the areas of microarchitecture and compilers for future microprocessors with the objective of increasing their performance and reducing their energy consumption and cost, while delivering highly reliable systems. IBRC has a long experience in the area of resilient microarchitectures, and has published many papers in this area.

The IMEC is a world-leading independent research center in nanoelectronics and nanotechnology. Imec is headquartered in Leuven, Belgium, has staff of more than 1,650 people and revenue of 270 million euro. Imec's More than Moore research targets semiconductor scaling for the 22nm technology node and beyond. With its More than Moore research, imec invents technology for nomadic embedded systems, wireless autonomous transducer solutions, biomedical electronics, photovoltaics, organic electronics and GaN power electronics. Imec's research bridges the gap between the fundamental research at universities and RΆin the industry. It has unique processing and system know-how, intellectual property portfolio, state-of-the-art infrastructure, and a strong and worldwide network position.

For more information, please click here

Copyright © M2 PressWIRE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project