Home > Press > Mitsubishi Electric Achieves 14.8% Conversion Efficiency in Thin-film Silicon Solar Cell
Abstract:
Triple junction structure enables high conversion efficiency for more solar-power output
Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it has achieved a very high photoelectric conversion efficiency of 14.8% in a 5mm x 5mm thin-film silicon photovoltaic (PV) cell. Photoelectric conversion efficiency is the rate at which sunlight energy is converted into electric current, with higher rates meaning more output. The thin-film silicon PV cell developed by Mitsubishi Electric has a triple junction structure that utilizes a majority of the solar spectrum for higher efficiency.
At present, crystalline silicon is used commonly for PV cells. Due to their relatively high photoelectric conversion efficiency, crystalline silicon PV modules are widely used in applications with limited surfaces, such as on the roofs of residential houses. The price of silicon wafers can fluctuate greatly, however, due to changes in market demand.
Thin-film silicon PV cells are garnering attention because they use just 1% the amount of silicon material required for crystalline silicon PV cells, which helps to save resources as well as reduce costs. Although thin-film silicon PV cells are lower in photoelectric conversion efficiency than crystalline silicon PV cells, their lower product costs offer benefits for midsized and large industrial PV systems, such as those used in factories, electric power utilities and municipalities. In addition to expected growth in these fields, there is great upside potential in other fields if their efficiency can be improved in the coming years.
Multi-junction layers offer an efficient way of raising conversion efficiency in thin-film silicon PV cells because each layer absorbs different wavelengths of sunlight. It is extremely difficult, however, to adjust the characteristics of each layer in the multi-junction structure, so most thin film silicon PV cells today are only single or double layered.
Mitsubishi Electric, however, has met a technological breakthrough to achieve 14.8% photoelectric conversion efficiency, according to its own evaluation, by using a triple-junction configuration in which the first layer absorbs short wavelengths and the third layer absorbs long wavelengths, thereby enabling the use of a wide solar spectrum from visible light to infrared rays. Key technologies that help to make this possible include:
* Semiconductor materials that tune to a particular frequency of the spectrum
* High-quality film-deposition processing for each layer
* Texture fabrication applied to transparent electrodes for optimal confinement of sunlight
Mitsubishi Electric intends to further continue its research and development with aims to raise the photoelectric conversion efficiency of its thin-film PV cells by improving cell structure, materials, processing and other factors, aiming to develop advanced PV systems that contribute to sustainable, low-carbon societies.
Background
PV systems are garnering increasing attention as a means to tackle global warming. Although the global PV market temporarily shrank from the latter half of 2008 due to the worldwide recession, it is expected to recover and continue growing after 2010.
Patents
The technologies announced in this press release encompass 118 Japanese and 16 international patents pending.
####
About Mitsubishi Electric
With over 85 years of experience in providing reliable, high-quality products to both corporate clients and general consumers all over the world, Mitsubishi Electric Corporation (TOKYO: 6503) is a recognized world leader in the manufacture, marketing and sales of electrical and electronic equipment used in information processing and communications, space development and satellite communications, consumer electronics, industrial technology, energy, transportation and building equipment. The company recorded consolidated group sales of 3,665.1 billion yen (US$ 37.4 billion*) in the fiscal year ended March 31, 2009.
For more information visit global.mitsubishielectric.com
*At an exchange rate of 98 yen to the US dollar, the rate given by the Tokyo Foreign Exchange Market on March 31, 2009.
For more information, please click here
Contacts:
Media Contact
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-3380
Copyright © Mitsubishi Electric
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||