Home > Press > Caltech Researchers Develop Nanoscale Structures with Superior Mechanical Properties
![]() |
Scanning electron micrograph of a typical as-fabricated 100-nm-diameter tensile sample. Credit: Dongchan Jang/Caltech |
Abstract:
Researchers at the California Institute of Technology (Caltech) have developed a way to make some notoriously brittle materials ductile—yet stronger than ever—simply by reducing their size.
The work, by Dongchan Jang, senior postdoctoral scholar, and Julia R. Greer, assistant professor of materials science and mechanics at Caltech, could eventually lead to the development of innovative, superstrong, yet light and damage-tolerant materials. These new materials could be used as components in structural applications, such as in lightweight aerospace vehicles that last longer under extreme environmental conditions and in naval vessels that are resistant to corrosion and wear.
A paper about the work appears in the February 7 advance online edition of the journal Nature Materials.
"Historically," says Greer, "structural materials have always had to rely on their processing conditions, and thereby have been 'slaves' to their properties." For example, ceramics are very strong, which makes them great for structural applications. At the same time, these materials are very heavy, which is problematic for many applications, and they are extremely brittle, which is less than ideal for supporting heavy loads. In fact, says Greer, "they fail catastrophically under mechanical loads." Metals and alloys, on the other hand, are ductile, and therefore unlikely to shatter, but they lack the strength of ceramics.
Materials scientists have developed an intriguing class of materials called glassy metallic alloys, which are amorphous and lack the crystalline structure of traditional metals. The materials, also known as metallic glasses, are composed of random arrangements of metallic elements like zirconium, titanium, copper, and nickel. They are lightweight—a "huge advantage" for their incorporation into new types of devices, Greer says—and yet are comparable in strength to ceramics. Unfortunately, their random structure makes metallic glasses quite brittle. "They also fail catastrophically under tensile loads," she says.
But now Greer and Jang, the first author on the Nature Materials paper, have developed a strategy to overcome these obstacles—by making metallic glasses that are almost vanishingly small.
The scientists devised a process to make zirconium-rich metallic glass pillars that are just 100 nanometers in diameter—roughly 400 times narrower than the width of a human hair. At this size, Greer says, "the metallic glasses become not only even stronger, but also ductile, which means they can be deformed to a certain elongation without breaking. Strength plus ductility," she says, represents "a very lucrative combination for structural applications."
As yet, there are no immediate applications for the new materials, although it may be possible to combine the nanopillars into arrays, which could then form the building blocks of larger hierarchical structures with the strength and ductility of the smaller objects.
The work, however, "convincingly shows that 'size' can be successfully used as a design parameter," Greer says. "We are entering a new era in materials science, where structural materials can be created not only by utilizing monolith structures, like ceramics and metals, but also by introducing 'architectural' features into them."
For example, Greer is working toward fabricating a "brick-and-mortar" architecture using tiny plates of a metallic glass and ultrafine-grained ductile metal with nanoscale dimensions that could then be used to fabricate new engineering composites with amplified strength and ductility.
To use this architecture-driven approach to create structural materials with enhanced properties—that are, for example, superstrong, yet light and ductile—researchers must understand how each constituent part deforms during use and under stress.
"Our findings," she says, "provide a powerful foundation for utilizing nanoscale components, which are capable of sustaining very high loads without exhibiting catastrophic failure, in bulk-scale structural applications specifically by incorporating architectural and microstructural control."
Adds Greer: "The particularly cool aspect of the experiment is that it is nearly impossible to do! Dongchan, my amazing postdoc, was able to make individual 100-nanometer-diameter tensile metallic glass nanopillar samples, which no one had ever done before, and then used our custom-built in situ mechanical deformation instrument, SEMentor, to perform the experiments. He fabricated the samples, tested them, and analyzed the data. Together we were able to interpret the results and to formulate the phenomenological theory, but the credit goes all to him."
The work in the Nature Materials paper, "Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses," was funded by the National Science Foundation and the Office of Naval Research, and utilized the fabrication and characterization facilities of the Kavli Nanoscience Institute at Caltech.
####
About Caltech
The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.
For more information, please click here
Contacts:
Kathy Svitil
Copyright © Caltech
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Marine/Watercraft
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
A sunlight-driven “self-healing” anti-corrosion coating May 27th, 2022
Quantum tech in space? Scientists design remote monitoring system for inaccessible quantum devices February 11th, 2022
Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Aerospace/Space
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |