Home > Press > Argonne scientists squeeze more out of metal-organic framework
![]() |
Argonne scientist Karena Chapman holds up a wafer of metal organic framework ZIF-8 with its structure displayed on the computer screen. Chapman along with scientists Peter Chupas and Gregory Halder were able to change the structure of a metal organic framework at pressures low enough for large scale industrial applications. |
Abstract:
Scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have discovered a new route to transform the structure of porous materials at industrially-accessible high pressures.
Normally, these materials will spring back to their original structure after they have been compressed, almost like a spring, but above a certain pressure this material adopts a new structure," Argonne scientist Karena Chapman said. "It is a related structure, but it is as if when we compressed the spring, it bounced back to a different shape."
ZIF-8 is a commercially available metal-organic framework (MOF) with molecular-scale pores that can have valuable catalytic applications. Chapman, along with scientists Gregory Halder and Peter Chupas, used the Advanced Photon Source's high-focused X-ray beams to observe the structure of the compound after it withstood varying degrees of pressure. The structural transition was found to occur at relatively modest pressures pressures that can be achieved on the larger scales needed to test how the change in structure affects the compound's functional behavior.
Gas uptake measurements, carried out within the Materials Science Division, revealed that the material's porosity was modified for the new structure. This could be used to optimize its performance for specific applications in areas such as hydrogen storage for fuel cells. This discovery shows that by exerting pressure on MOFs through the pelletization process, researchers can modify the compound's structure and storage property.
While this type of structural change has been seen in traditional porous materials (e.g., zeolites) at much higher pressures, the structural changes in the MOF material occur at lower pressures and consequently, this modification can be more readily scaled up to industrial levels.
The next step is for the scientists to examine the mechanism of the structural change and how this modification process can be most effectively exploited for molecular storage and separation applications.
A paper about this discovery was recently published in the Journal of the American Chemical Society, here pubs.acs.org/doi/abs/10.1021/ja908415z?journalCode=jacsat.
####
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
For more information, please click here
Contacts:
Brock Cooper
630/252-5565
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chemistry
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Industrial
Quantum interference in molecule-surface collisions February 28th, 2025
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022
Fuel Cells
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |