Home > Press > UCLA Engineering awarded national pothole-repair project with total funding of $3 million
Abstract:
American drivers may soon be riding a little smoother thanks to UCLA's Henry Samueli School of Engineering and Applied Science. A research team led by the school has been awarded a major project by the U.S. Commerce Department's National Institute of Standards and Technology (NIST) to develop an innovative pothole-repair technology for asphalt pavement.
The project's funding, totaling $3.05 million, comes in part from NIST's Technology Innovation Program (TIP), which supports innovative, high-risk and high-payoff research in new technologies that address critical national needs in civil infrastructure.
"Receiving this major award from NIST is another testament to the important research our faculty conduct on a regular basis," said Vijay K. Dhir, dean of UCLA Engineering. "The Institute for Technology Advancement, an off-campus technology development institute established by the school, was also instrumental in putting together the best team to address one of the most pressing issues facing our infrastructure."
As the nation's asphalt pavements age and deteriorate, the need for corrective measures to restore safety and drivability to roadways increases. Previous repair approaches, including various methods for putting down asphalt-aggregate mixtures and manipulation of asphalt properties, have provided only incremental improvement.
UCLA Engineering, in partnership with Materia, Inc., together with the Department of General Services of the city of Los Angeles (as a subcontractor), will be developing a pothole-repair technology for asphalt pavement in both warm and cold weather using an ultra-high-toughness nanomolecular resin as a reinforcement, or binder, for asphalt-aggregate pothole-repair material.
"This project addresses a critical area in the nation's infrastructure integrity and durability, which has not been resolved or significantly mitigated over the last several decades," said Jenn-Ming Yang, professor and chair of materials science and engineering at UCLA Engineering and the project's principal investigator. "Under the support of NIST TIP, a new and novel material solution to prolong the service life of pothole repair will be developed and implemented. We are thankful to NIST for this opportunity."
"This award provides an opportunity for the school's faculty to apply the technologies it possesses in the areas of nanomaterials, processing and analytical modeling with the local and state agencies and conduct an integrated research, from materials development to systems deployment," said Wei H. Kao, senior technology strategist for the Institute for Technology Advancement (ITA) and co-principal investigator for the project. "The members on this team have complimentary expertise that is critical to the success of this project."
Other co-principal investigators are J.W. Ju, UCLA professor of civil and environmental engineering, and Larry Carlson of ITA.
More than just an annoyance, potholes can be responsible for vehicle damage, accidents and traffic congestion costing billions of dollars annually. Thus far, most technical approaches to pothole repair have focused on improving the processing and deployment of the asphalt patches.
"UCLA Engineering will be taking a radically different approach, infiltrating the compacted asphalt-aggregate mixture with an ultra-high-toughness, low-viscosity nanomolecular resin," Yang said.
The nanomolecular resin will be infiltrated, cured and hardened to form a continuous network of mechanical "cages" that will provide mechanical locking of the aggregates in the asphalt mixture, serving as a load-bearing component under repeated traffic stresses and providing compressive shear-load strength. Anchor patches to the original pavement walls and sub-bases will also prevent water infusion and will serve as a barrier against the initiation and propagation of alligator cracks.
The Los Angeles Department of Public Works and the California Department of Transportation will support the deployment of the new repair materials and technology to street test sites in warm and cold regions.
"This project will lead to the development of new materials repair methodology, which can dramatically enhance the strength, durability and service life of the asphalt pavement and pothole-repair patching practices," Yang said.
"Furthermore, this will also open up the opportunity for future applications of UCLA research on airfield pavements across commercial airports and military airports throughout the country," Kao said.
####
About UCLA
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs, including an interdepartmental graduate degree program in biomedical engineering. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanotechnology, nanomanufacturing and nanoelectronics, all funded by federal and private agencies.
About the Technology Innovation Program
The Technology Innovation Program, an initiative of the National Institute of Standards and Technology (NIST), is a merit-based, competitive program that provides cost-shared funding for research projects by single small- or medium-sized businesses, or by joint ventures that also may include institutions of higher education, nonprofit research organizations and national laboratories.
About NIST
The National Institute of Standards and Technology (NIST), a nonregulatory agency of the U.S. Department of Commerce, promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.
For more information, please click here
Contacts:
Wileen Wong Kromhout
310-206-0540
Copyright © Eurekalert
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Automotive/Transportation
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||