Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCF Secures $7.5 Million Research Grant to Improve Hybrid Photovoltaic Solar Cells

Photo: Jacque Brund

Winston Schoenfeld, a professor in CREOL, the College of Optics and Photonics at UCF, will lead the research.
Photo: Jacque Brund Winston Schoenfeld, a professor in CREOL, the College of Optics and Photonics at UCF, will lead the research.

Abstract:
The University of Central Florida has been awarded a $7.5 million research grant to study ways to make photovoltaic solar cells more efficient in capturing and converting solar energy into electricity and less costly to manufacture.

UCF Secures $7.5 Million Research Grant to Improve Hybrid Photovoltaic Solar Cells

Orlando, FL | Posted on October 29th, 2009

The research can lead to ways to produce highly flexible solar panels, which could be manufactured in larger quantities and used to support a variety of solar products, spanning from solar roof shingles to portable energy.

The grant, from New York-based Prime Source Initiative, Inc., will be awarded in $1.5 million allotments per year for five years.

The research will be led by Winston Schoenfeld, a professor in CREOL, The College of Optics and Photonics at UCF. He will work on methods to increase the efficiency between the organic material that harvests the sun's energy and the inorganic semiconductor nanostructures within a hybrid photovoltaic solar cell.

"All-organic solar cells are effective at absorbing light and collecting energy from the sun, but they aren't efficient at converting this into electricity," Schoenfeld explained.

Hybrid solar cells use an inorganic semiconductor (such as silicon) to increase electric output. But how to efficiently and economically integrate the organic and the inorganic components of the hybrid solar cell is a challenge and hasn't been widely studied.

Schoenfeld will develop the inorganic, nanostructured semiconductor backbone of the solar cell. The project's co-researcher, Andre Gesquiere, a professor in UCF's Nanotechnology Science Center and the Chemistry Department, will lead the organic, polymer research components of the project.

"Once the light is absorbed in the polymer, excitons are created that must be separated. If you don't separate them, they'll just recombine and you lose that energy," Schoenfeld said. "So we are using inorganic nanostructures that act as 'transport highways' to allow an efficient way for excitons to be separated and transferred into electricity."

The research will seek to answer questions such as how close together and how long the nanostructures should be made within the solar cell. Researchers also will attempt to increase the absorption capability of the organic material so that more of the solar spectrum can be harvested.

Schoenfeld cautioned that while the research goal is to identify efficient solar devices in the laboratory, the discoveries have to meet the demands of deployment into the marketplace.

"We have to think of the constraints of the end product. Will it be expensive to manufacture? Will the end-product be able to capture the aesthetic properties that will actually sell? Is there enough demand in other geographic areas? These are all factors that drive what products can eventually emerge from the laboratory."

Schoenfeld said this research project will emphasize collaboration with other researchers.

"A large grant can spawn three or four researchers to come together and go after challenging multi-disciplinary ideas, bringing vision into reality," Schoenfeld said. "The real value in this grant will be the ability to create these new collaborative connections, putting UCF in a unique position to make significant progress in the area of photovoltaic research."

Prime Source Initiative is based in New York with a real estate affiliation in Florida. Established in 1974, the supply chain company has expanded into humanitarian efforts to include this first-of-its kind research grant to fund photovoltaic research in hopes of creating more energy efficient communities.

####

About University of Central Florida
UCF Stands for Opportunity: The University of Central Florida is a metropolitan research university that ranks as the 3rd largest in the nation with more than 53,500 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy.

For more information, please click here

Contacts:
Kimberly Lewis
News & Information
407-823-1637

Copyright © University of Central Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project