Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New technique for making thin electronics supported by stimulus funds

Abstract:
The National Science Foundation's Materials World Network program is supporting Cornell scientists who have invented a reliable way of processing organic devices with a patent-pending process called orthogonal lithography. The grant of $900,000 is from the American Recovery and Reinvestment Act and lasts through 2013.

New technique for making thin electronics supported by stimulus funds

Ithaca, NY | Posted on October 20th, 2009

Scientists who study electronics made of organic materials -- based on carbon, as opposed to traditional silicon -- can make some of the most lightweight, inexpensive and flexible semiconductors the world has seen.

But the ability to mass-produce these organic devices is another story. A well-known nanofabrication method called photolithography, in which patterns are transferred into a material coated with a light-sensitive photoresist, has so far been problematic for the delicate, easily contaminated organic materials. This has hindered organic materials' entry into the market for such things as flat-panel displays.

In orthogonal lithography, materials are patterned using a particular patent-pending photoresist that is soluble in environmentally safe fluorinated solvents. This protects the organic material and dramatically eases production challenges.

"We've identified a family of orthogonal solvents that is very different than water and very different than the non-polar organics -- the solvents usually used in these processes," said Chris Ober, co-leader of the grant with George Malliaras, both Cornell professors of materials science and engineering, and Richard Friend of the University of Cambridge.

The grant will fund the group's continued study of increasingly complex organic devices using orthogonal lithography. Thanks to the stimulus funding, Ober will also be able to retain a postdoctoral associate in his lab, he said. Indirectly, the funds may aid job creation at a new Ithaca startup company, Orthogonal Inc., that is based in the technology.

To date, Cornell has received 120 grants on the Ithaca campus, totaling almost $99 million.

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093

Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project