Home > Press > Race for New Superconductors Shrinks to Nanoscale
Wires made up of yarns spun from millions of carbon nanotube bundles may help make superconductivity practical. The nanofibers making up the wire are each thousands of times smaller than a human hair. |
Abstract:
Highly Engineered Materials May Solve One of Science's Toughest Problems
A team of researchers from UT Dallas, Clemson University and Yale University are using science on the nanoscale to address one of the most elusive challenges in physics—the discovery of room temperature superconductivity. With that as the ultimate goal, the team is working to develop superconducting wires made from nanotubes that carry high currents at the temperature of liquid nitrogen, or higher.
With a $3 million research grant from the Air Force Office of Scientific Research (AFOSR), the team has embarked on a five-year project to invent new superconducting wires based on highly engineered nanomaterials, each component thousands of times smaller than a human hair. Such wires would be used for applications ranging from magnets for Magnetic Resonance Imaging to replacing energy-wasting copper in power transmission lines.
While traditional copper wires are highly conductive, they lose power through resistance, which translates into wasted energy. Superconductive materials transmit power without resistance, but they have to be cooled to low temperatures.
"The year 2011 marks 100 years since superconductivity was discovered," said Dr. Anvar Zakhidov, one of the researchers on the project and an associate director of the Alan G. MacDiarmid NanoTech Institute. "Still, the problem of finding a room temperature superconductor has not been solved, and present high temperature superconductors become non-superconducting when currents are moderate. Also, modern high temperature superconducting materials are too brittle, expensive and deficient in electronic properties for wide-scale application. We hope to overcome those limitations by fabricating wires from nanotubes, using carbon nanotubes or other nanotubes enhanced by atoms like boron, nitrogen or sulfur."
According to Zakhidov, who is a professor of physics, as much as 30 percent of electrical energy can be lost as heat when electricity travels through power lines. Superconducting materials promise enormous environmental and energy savings.
Under the leadership of Zakhidov and Dr. Ray Baughman, director of the NanoTech Institute, the team at the institute has already pioneered methods to assemble nanomaterials into yarns.
"Making superconducting wires and cables from nanofibers and nanoparticles presents special challenges that go beyond the discovery of new superconductors," Baughman said. "For example, for each pound of superconducting wire, it may be necessary to assemble more than 3 billion miles of individual nanotubes—and the goal is to achieve this assembly at commercially useful rates. For this task, we are inventing radically new methods for making superconducting wires."
Dr. Lisa Pfefferle, professor of chemical engineering at Yale University and member of the research team, is experimenting with new types of nanofibers that have been synthesized by her team using elements like boron.
Team member Dr. Apparao Rao, professor of physics at Clemson University, has already produced superconducting nanotubes by a process called pulsed laser ablation. The process results in carbon nanotubes "doped" with boron that superconduct at higher temperatures than other carbon based materials—but still at relatively low temperatures.
Dr. Myron Salamon, dean of the School of Natural Sciences and Mathematics, will evaluate the team's new superconductors to test the maximum temperature of superconductivity as a function of current and power transmitted, which is a crucial factor for using these materials in power systems.
"There's always been a sense that we can enhance superconductivity by using lighter materials," Salamon said. "Wires made from ultra-light nanotubes can allow atoms to vibrate easily, which helps with superconductivity. There's good evidence that carbon-based materials, like dopant modified carbon nanotubes, might make good superconductors."
Five research grants were awarded to spur development of practical high temperature superconductors. The grants are administered through the AFOSR by Project Manager Dr. Harold Weinstock, who has helped pioneer and support many other important discoveries in physics. According to Zakhidov, other universities in the collaborative superconductor race include the University of Houston, the University of Maryland, the University of California, San Diego and Stanford University.
####
About UT Dallas
The University of Texas at Dallas (also referred to as UT Dallas or UTD) is a public research university in the University of Texas System. The UTD main campus is located in Richardson, Texas, a suburb of Dallas, Texas, United States. A satellite location of UT Dallas is located adjacent to the UT Southwestern campus in central Dallas.
From Wikipedia, the free encyclopedia
For more information, please click here
Contacts:
Media contacts
Brandon V. Webb
UT Dallas
(972) 883-2155
or the Office of Media Relations
UT Dallas
(972) 883-2155
Copyright © UT Dallas
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||