Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leti Achieves Groundbreaking Discovery in Using Copper-based Catalysts to Synthesize Silicon Nanowire

Abstract:
Project Demonstrates that Silicon Nanowire Synthesis can be CMOS-Compatible

Leti Achieves Groundbreaking Discovery in Using Copper-based Catalysts to Synthesize Silicon Nanowire

Grenoble, France | Posted on October 7th, 2009

Leti, the leading research and development institute focused on micro- and nano-technologies, announced today that it has broken new ground in the integration of nanotechnology with traditional complementary metal oxide semiconductor (CMOS) chip technology. CMOS is the most widely used technology for manufacturing silicon integrated circuits.

Leti researchers have demonstrated that the synthesis of silicon nanowire can be achieved at temperatures as low as 400 °C by using a copper-based catalyst and an unconventional preparation method. That is much lower than temperatures previously achieved for silicon nanowire synthesis using copper.

This technological breakthrough helps to bridge the gap between CMOS technology and the bottom-up growth of nanowires. It is expected to impact the IC markets by making it possible to add new non-digital functions - such as sensors and advanced photovoltaic architectures - to CMOS chip-making processes.

In a recently published Nature Nanotechnology article, Leti researchers explained that they achieved their breakthrough result by taking an approach transgressing a very well established axiom in nanowire growth. Previously, researchers have assumed that oxidized metals are not suitable for nanowire synthesis, so they usually have tried to remove the oxide. Leti achieved its industry-changing results by oxidizing the copper catalyst and using the high chemical activity of this oxide to reduce synthesis temperature of the nanowires. Leti's research shows that it is possible to grow silicon nanowires with a CMOS-compatible catalyst and at CMOS-compatible temperatures.

Independent thinking culture

"At Leti, we aim to produce knowledge that is usable by industry. This nanowire breakthrough is a beautiful illustration of our mission because the project was bound by industrial constraints from the start," said Leti CEO Laurent Malier. "Leti's unique ability to achieve these results stems from our long-term experience in industrial process development, and our broad range of complementary nano-characterization techniques. Leti's culture, which encourages independent thinking and the freedom to act upon it, was also a key component in this project."

Semiconductor nanowires, which offer a variety of potential uses, have been a subject of basic research for about 10 years. On one hand, in chemistry and biology, the interest is related to nanowires' high surface-to-volume ratio, which makes them well-suited for the electrical detection of chemical or biological substances. Their high surface-to-volume ratio may also be an advantage in solar energy production. Nanowires' small mass, on the other hand, makes them interesting for mechanical mass detection.

All of these potential applications have already been demonstrated by basic research, and technologists are excited about applying them in new devices. One promising idea is to implement new functions such as sensing and energy production on top of integrated circuits. Until now, computing has relied on external power and user input. Nanowire technology has the potential to create computing devices that benefit from both internally generated energy production and direct environmental input.

To view the article in Nature Nanotechnology, visit www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2009.234.html

####

About CEA-Leti
CEA is a French Research and Technology Organization, with activities in three main areas: Energy, Technologies for Information and Healthcare, and Defence and Security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and Microsystems (MEMS) are at the core of its activities. As a major player in the MINATEC® excellence center, Leti operates 8,000-m² state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families. In 2008, contractual income covered more than 75 percent of its budget, which totalled 205 M€.

For more information, please click here

Contacts:
Clément Moulet, Press Officer
Tel.: +33 4 38 78 03 26

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project