Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New eco-friendly self-cleaning material tough on stains, light on effort

To create easy-to-clean surfaces,
scientists have developed coatings
for use on an array of materials,
including fabrics, glass, concrete
and windshields.
Credit: Aldridged, Dreamstime.com
To create easy-to-clean surfaces, scientists have developed coatings for use on an array of materials, including fabrics, glass, concrete and windshields. Credit: Aldridged, Dreamstime.com

Abstract:
Cleaning oily smears from kitchen countertops, mirrors, garage floors, and other surfaces with plain water — rather than strong detergents or smelly solvents — may seem like pure fantasy. But scientists in Indiana today describe what they believe to be a simple and effective state-of-the-art oil stain remover. They have developed a new coating for glass, plastics, and a range of other materials that would enable consumers to wipe away those pesky oils with plain water.

New eco-friendly self-cleaning material tough on stains, light on effort

Washington, DC | Posted on August 16th, 2009

Their report at the 238th National Meeting of the American Chemical Society (ACS) points out that the same coatings can be added to common window cleaning sprays and used to prevent bathroom mirrors, automobile windshields and other surfaces from fogging up.

"You add water, and the oil just comes right off like magic," said Jeffrey Youngblood, Ph.D., lead researcher on the project. "These are eco-friendly coatings — environmentally ‘green' in the sense that they eliminate the need for harsh detergents and solvents in settings ranging from home kitchens to industrial machine shops that must contend with heavy oil spills."

The materials could be used in a range of consumer and industrial products, Youngblood said. They include household cleaners, easy-to-clean paints, water filters that separate water from oil, sealants for concrete floors and walls that repel oil in home garages and auto repair shops. In addition, anti-fog coatings could be used on windshields or eyewear, including everyday lenses and fog-free scuba masks.

The eco-friendly plastics could reduce the need for detergents containing phosphates. "We put out tons of detergents and phosphates each year," said Youngblood, adding that the polymer materials also could reduce the use of detergents for laundering clothes. This would cut down on the release of phosphates, which wash into lakes and streams and stimulate growth of algae, depleting oxygen supplies in ways that cause fish kills in waterways and make swimming unsafe for humans.

"The idea is to use these polymers to clean in situations where it's inconvenient to apply soap or anywhere you would need to have oil cleaned off easily," said Youngblood, a materials engineer at Purdue University in West Lafayette, Ind. "Oil fouling is always a problem. A lot of people overlook the fact that pure water will generally not remove oil from a surface, but using this product transforms water into a super detergent."

Youngblood's group spent years in an effort to develop substances with the goal of making a surface that would repel oil more than water. Once successful, their framework for self-cleaning plastics was in place. "With these materials, if you stuck an oil droplet on them you could completely remove it with water. You could basically do soap-free rinsing."

These polymer coatings — about 20,000 times thinner than the width of a human hair — were highly sensitive to water and would break to the touch. Youngblood has built upon these materials to make a new family of ready-to-use polymers that can be easily applied to a variety of surfaces.

They have a bottom layer of polyethylene glycol, which attracts water, and an upper layer of a Teflon-like molecule that prevents the passage of oil. The result is a surface that holds a film of water while repelling oil. "Our work is a big step forward toward useable materials as either additives or coatings," he said, "and few others are working in this area. Most research on self-cleaning is done with different surfaces."

Youngblood is currently evaluating self-cleaning and anti-fog capabilities for polymers on different kinds of metals and ceramics. Preliminary tests on the lifetime of anti-fog coatings are especially encouraging. "We have stored these on shelves and use it months afterwards, and we haven't noticed a decrease in performance," he said. "We feel that we can make all our self-cleaning plastics commercially available within a few years."

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Media Inquiries:
Michael Bernstein

202-249-4014 (Meeting, Aug. 15-19)
202-872-6042 (Before Aug. 15)

Michael Woods

202-249-4014 (Meeting, Aug. 15-19)
202-872-6293 (Before Aug. 15)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Home

Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Industrial

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project