Home > Press > QD Vision Awarded U.S. Army SBIR Phase II Grant Totaling $775,000
![]() |
Abstract:
Maker of Nanotech-based Products to Develop Micro-Displays using Quantum-Dot Light-Emitting Devices (QLEDs)
QD Vision (www.qdvision.com), developer of nanotechnology-based products for lighting and displays, today announced it has been awarded a Small Business Innovation Research (SBIR) Phase II contract by the U.S. Army as part of its Night Vision and Electronic Sensors Directorate (NVESD). Combined with new, additional funds for a Phase I option period, the award totals $775,000.
Under the grant, QD Vision will develop for NVESD, micro-displays based on quantum- dot-based light-emitting devices (QLEDs). Quantum dots are nanometer-sized, inorganic crystals that create light when stimulated with photons or electrons. QD Vision's high resolution printing technology, along with the quantum dot's extremely small size, makes the technology a logical choice for the small feature sizes required by micro-displays.
QD Vision was selected from a number of competitors for this SBIR program that funds research and development for technological solutions to meet critical Army needs. The company will leverage experience gained in Phase I of the program, titled, "Direct Patterning of Emitters for Micro-Displays," to develop the small, portable, micro-displays based on QLEDs.
"Being selected for Phase II of this grant is a tremendous achievement, and it demonstrates great confidence in QD Vision and its nanotechnology-based products," said Dr. Seth Coe-Sullivan, QD Vision co-founder and Chief Technology Officer. "Our extensive experience will help the Army to meet its requirements for state-of-the-art micro-displays."
Micro-displays are a key component of indirect viewing systems, and are used in applications that require high resolution, brightness, color contrast and power efficiency. They are featured in applications such as video headsets, helmet-mounted displays, wearable computers and other portable devices. QD Vision will leverage its leadership in quantum-dot materials and deposition techniques to develop micro-displays that feature high luminance contrast, saturated colors, and improved distinction and resolution of color coded data.
Research supported by the SBIR program stimulates technological innovation and promotes the productivity and economic growth of the nation.
####
About QD Vision
QD Vision (www.qdvision.com) is a quantum-dot product company that delivers highly differentiated lighting solutions to major industries where color, power and design matter. QD Vision’s Quantum Light™ platform enables step-change advances over other display and lighting solutions such as liquid-crystal displays (LCDs), plasma displays, light-emitting diodes (LEDs), and even organic LEDs (OLEDs). QD Vision is actively designing in products with industry-leading companies in target markets including cleantech applications, such as solid state lighting, consumer electronics and flat panel displays, electronic signage, and defense. Leveraging a first-tier patent position in nanotechnology originating at MIT, QD Vision is a privately held company based in the Watertown, Mass.
For more information, please click here
Contacts:
Aquarius Advisers
Mel Webster, 617-494-9800
Copyright © Business Wire
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |