Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ordered Water: Just how much water is there in calcined gypsum?

Abstract:
Gypsum was used as a building material in antiquity and is still widely used as a binder in plaster, drywall, and spackling paste. Known as dihydrate in construction chemistry, gypsum is a water-containing calcium sulfate (CaSO4. 2 H2O).

Ordered Water: Just how much water is there in calcined gypsum?

Trostberg, Germany | Posted on April 16th, 2009

In various calcination processes, some of the water of crystallization is removed, resulting in calcined gypsum, or hemihydrate (CaSO4. 0.5 H2O). When this material comes into contact with water, it reabsorbs it and sets up. The structure and exact water content of hemihydrate have remained a matter of speculation.

Michael F. Bräu (BASF Construction Chemicals GmbH) and Horst Weiss (BASF SE) have now brought this speculation to an end: by using single-crystal structural analyses they were able to solve the structure, generate a structural model, and support it with computer calculations. As reported in the journal Angewandte Chemie, hemihydrate does indeed contain exactly one half of a water molecule per structural unit—tightly bound to the calcium sulfate framework.

Hemihydrate is the most heavily produced inorganic compound worldwide, so its structure and water content are of great interest, both economically and scientifically. The first structural model of this compound was proposed in 1933, and it still holds today. Since then, there have been a number of refined models, which do a good job of reproducing the fundamental calcium sulfate scaffold. However, there has always been disagreement about whether the water molecules also adopt a defined arrangement and if so, what it looks like.

Answering such questions requires structural analyses based on X-ray diffraction experiments carried out on single crystals of the right size and quality. The atoms of a crystal deflect incoming X-rays; the resulting characteristic diffraction pattern makes it possible to calculate the positions of the individual atoms in the crystal. However, this has been very difficult to achieve in the case of gypsum crystals. Bräu and Weiss have now been successful. By using various tricks they were able to interpret the diffraction pattern and to use their computer calculations to consolidate the data into a plausible structural model. The alignments of the individual water molecules and their distances from each other prove that there are no interactions between them; they are bound only to the calcium sulfate framework. They are packed in so tightly that no further water molecules can enter into the channels of the basic structure. Variations of the crystal with a proportion of water molecules above 0.5 per formula unit thus seem to be very unlikely.

Author: Michael F. Bräu, BASF Construction Chemicals GmbH, Trostberg (Germany),

Title: How Much Water Does Calcined Gypsum Contain?

Angewandte Chemie International Edition 2009, 48, No. 19, 3520-3524, doi: 10.1002/anie.200900726

####

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project