Home > Press > Georgia Tech will push boundaries of nanotechnology research with innovative low-temperature carbon nanotube fabrication tool
Low temperature growth of carbon nanotubes is a research goal of the Georgia Institute of Technology, using a new tool and process from Surrey NanoSystems. |
Abstract:
- processing temperatures of ~350 C supports growth on flexible polymer substrates
- carbon-nanotube heatsink structures for thermal management are one major design goal
The leading research university, Georgia Institute of Technology, has ordered a nanomaterial growth tool from Surrey NanoSystems.
The NanoGrowth 1000n equipment chosen incorporates an innovative low-temperature growth module that will allow precision carbon nanotubes and related nanomaterials to be grown repeatably at much lower temperatures than normal - down to 350 degrees C initially and potentially even lower. The capability will help researchers to explore growth on a very wide range of target substrates from active silicon devices to flexible polymer substrates.
One of Georgia Tech 's major research aims is to investigate the development of carbon nanotube (CNT) heatsink structures to dramatically increase heat conduction and dissipation capability - combating a prime cause of silicon chip failure and supporting further advances in integration density and performance.
Georgia Tech chose Surrey NanoSystems' NanoGrowth tool primarily for the flexibility of research opened up by its low-temperature capability, and its ability to grow material across large substrate areas of up to 4 inches (100 mm).
Dr Baratunde Cola, Assistant Professor at the George W Woodruff School of Mechanical Engineering, specified the equipment. During the selection process, against strong competition from a number of other tool vendors, Surrey NanoSystems demonstrated the NanoGrowth's ability to grow ordered nanostructures on flexible polymer materials of the general type used for flexible printed circuits. The team also grew sample structures using special catalyst materials created by Georgia Tech to foster particular nanomaterial structures of interest. The processing temperature used in the trials was around 350 degrees C. However, trials at even lower processing temperatures of around 300 degrees C are planned.
Dr Cola has just established a new research group called NEST - NanoEngineered Systems and Transport Research Group - that further extends the University's large footprint in nanotechnology research. NEST is a part of Georgia Tech's renowned Microelectronics Research Center and its research aims include developing technology for cleaner energy solutions, smaller and more affordable electronics, and general improvements to global living standards.
The NanoGrowth tool is one of the first and most important pieces of capital equipment that will be available to the NEST team. The tool includes both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability, allowing CNT growth at 'standard' temperatures in and around the 500-1000 degrees C range, as well as at much lower temperatures of 350-400 degrees C and below. Low temperature growth is particularly interesting, as it opens up many new application areas for CNTs. However, the team is equally interested in NanoGrowth's conventional high temperature growth capability, as the tool will be available to a wide spectrum of nanotechnology researchers and students.
Developed with the help of groundbreaking research into CNT fabrication undertaken at the UK University of Surrey's Advanced Technology Institute, NanoGrowth comes with proven recipes for the precise and repeatable growth of CNTs and other nanomaterials. When fitted with the company's unique patented low-temperature fabrication system, a combination of heat removal hardware and processing steps allow precise carbon nanotube growth at temperatures below 400 degrees C, making the system suitable for growing nanomaterials on fabricated silicon structures for advanced insulation or conduction purposes.
Another novel feature of the NanoGrowth tool that supports this application area is its innovative heat transfer system. This allows processing temperatures to ramp at up to 300 degrees C per second. This highly dynamic performance - which is an order of magnitude or more faster than many other tools - provides a platform for complex CNT research as it can allows can prevent ultra-finely-spaced catalyst material deposits from agglomerating during heating, supporting the growth of highly integrated arrays and shapes.
"Engineered nanostructures can be exploited to enhance energy transport and conversion processes and catalyze progress in a very large number of applications," says Assistant Professor Baratunde Cola of Georgia Institute of Technology. "The versatility of the NanoGrowth system will be a critical resource in this work, giving us the means to explore the growth of nanostructures on a very broad range of surfaces."
The NanoGrowth system will be delivered in Q2 2009. During the system building period, Surrey NanoSystems' scientific staff will be assisting Dr Cola by performing a number of trial nanomaterial growth processes to his specifications using NanoGrowth tools installed at the company and at the University of Surrey's Advanced Technology Institute. The target substrates include the high performance polyimide film Kapton, and Surrey NanoSystems expects to provide Dr Cola with a proven processing 'recipe' to allow his detailed research work to begin very quickly once the system is installed.
"NanoGrowth addresses the commercial process developer's need for stable and repeatable results, providing automated control over all aspects of CNT synthesis from catalyst generation to final material processing", says Duncan Cooper. "The tool's low temperature capability has allowed us to create processing recipes that can be applied to mainstream CMOS semiconductor processes, and we are now delighted to be working with such a prominent research university as Georgia Tech to grow engineered nanostructures at even lower temperatures."
####
About Georgia Institute of Technology
Surrey NanoSystems is represented in the US by Axiom Resources Technologies of Orange, CA.
Any trade names used are the property of their owners and are recognised by Surrey NanoSystems, including Kapton - a registered mark of DuPont.
For more information, please click here
Contacts:
Surrey NanoSystems
Euro Business Park, Building 24
Newhaven, BN9 0DQ, UK
t: +44 (0)1273 515899
US representative:
Axiom Resources Technologies, Inc.
1669 North O'Donnell Way
Orange, CA 92867-3634, USA.
t: 714-974-4141
www.axrtech.com
Copyright © Surrey NanoSystems
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
New-Contracts/Sales/Customers
Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021
Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020
Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020
GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||