Home > Press > Pore-free Ceramics Shine New Light on Lasers, Electronics and Biomedical Implants
![]() |
Researchers developed a new class of ceramics that are so pure and perfectly transparent that they can be used as a substitute for crystals in solid-state lasers.
Credit: Dr. Elizabeth Kupp, Adam Stevenson, and Prof. Gary L. Messing, Department of Materials Science and Engineering, The Pennsylvania State University |
Abstract:
To most people, the word "ceramics," refers to opaque clay flower pots or translucent porcelain tea cups. But not all ceramics block or scatter light.
Gary L. Messing, distinguished professor of ceramic science and engineering, and his group at Pennsylvania State University, are developing a brand new class of ceramics that are so pure and perfectly transparent, they can be used as a substitute for crystals in solid-state lasers.
Unlike traditional ceramics-such as your favorite coffee mug-materials scientists like Messing focus on what's called advanced ceramics. These have unique mechanical, electrical, optical or thermal properties that make them useful in all sorts of applications.
Advanced ceramics are already used in catalytic converters in cars, protective tiles covering the space shuttle, and electronic components in a desktop computer. In medical applications, advanced ceramics are used as the ball in hip replacements.
There are endless possibilities for taking advantage of the unique qualities of advanced ceramics. Many applications are limited, however, by tiny holes, called pores, which scatter light and make them opaque or translucent. Pores can also make the ceramic too brittle and ruin the flow of electrons and /or heat through the material.
"As a result of advances in ceramic processing science, we can now produce extremely high purity ceramics with almost no defects or pores," Messing said.
How "perfect" are the new ceramics? Messing and co-author Adam J. Stevenson reported a new method of making ceramic crystals that are over 99.999 percent free of pores, in their recent article, "Toward Pore-Free Ceramics," published in the Oct. 17, 2008, edition of Science.
At this level of density, there are usually only a few hundred tiny pores left in the researchers' samples after processing. And those pores that remain are generally only 10 to a few hundred nanometers in diameter-about five times smaller than the width of a human hair.
To make such dense ceramics, the scientists use synthetic powders, because they are much purer than clays and other materials mined from the earth. "We start with a very fine powder, form that powder into a desired shape, and then heat the formed powder to create a solid, dense body," said Messing.
This heating process, called sintering, happens at temperatures below the material's melting point. So without liquefying the material, sintering allows atoms in the powder to move around and fill in the spaces between the individual grains.
Soap-bubble Ceramics
"As we sinter a ceramic, the average size of the grains increases, because the larger grains slowly consume the smaller grains," said Messing. "You can visualize this process at home by making soap bubbles in the sink. If you watch carefully, the larger bubbles in the foam will absorb the smaller bubbles."
According to Messing, soap bubble observations like these actually helped materials scientists figure out some aspects of creating ceramics decades ago. "The physics behind 'grain growth' in both soap bubbles and ceramics are identical," he said. "It just happens on a much smaller scale and at higher temperatures in ceramics."
Some scientists predict that different properties of advanced ceramics may be enhanced by reducing grains to nanometer size. "Unfortunately, it can be difficult to make materials this small," said Messing. "If we understand the processes that lead to grain growth better, we can refine the grain size to the nanoscale and maximize mechanical, electrical and optical properties of the ceramic material."
Ceramic Lasers
To test their new method, Messing and his group made neodymium-doped yttrium aluminum garnet (Nd:YAG) laser ceramics, because they are important in industrial and military applications. The Nd:YAG crystal structure also works well with ceramic processing.
"Most high power, solid-state lasers use single crystals made by melt-growth methods," said Stevenson. "These require high temperatures of greater than 1950 degrees Celsius, and weeks or months to grow a single crystal boule [block] of Nd:YAG."
According to Stevenson, switching to ceramic processing could reduce the temperatures needed to make an Nd:YAG laser ceramic by at least 250 degrees Celsius and reduce the time it takes down to just days.
To make the ceramics, the group started with powders and mixed them with liquids and polymers to make a material similar in consistency to paint. "We used a process called tape casting to make long thin sheets of the material," Messing explained. "Next, we cut the sheets into squares and stacked them to form thicker squares about 1 centimeter x 5 cm x 5 cm."
After applying heat to sinter the squares, the ceramics became transparent. But the material still contained enough pores to degrade a laser's performance.
"We did a final step, called hot isostatic pressing (HIP), where we heated the ceramics to over 1600 degrees Celsius and applied high pressures with argon gas," Messing said. "By combining heat with pressure, we eliminated the few remaining pores."
Future Ceramics
After sintering and HIP, a ceramic material looks like a mosaic of tiny crystals, almost like a puzzle, when viewed under a scanning electron microscope.
"The presence of grain boundaries, or junctions, between individual crystals is the single most important difference between melt-grown single crystals and perfect ceramics," Messing said. "But we believe that the grain boundaries are so small that they have virtually no effect on the light traveling through the material."
Studying the effects of grain boundaries on transparent ceramics is just one area the researchers will pursue in the future. "Ceramics can eliminate most of the inherent defects of melt-grown crystals," Messing believes. "That means we may be able to make ceramics with superior optical properties."
For example, by controlling the positions of the ions inside the ceramic, scientists may be able to create new designs for high power lasers. And ceramic processing could allow complex shaped parts, using extrusion or slip casting, for novel laser designs-something they could never achieve with melt-grown crystals.
"Our goals are to make perfect materials and to lay out the science of transparent ceramics in such a way that it can easily be applied to other systems in the future," Stevenson said.
"Although we have made a number of innovations, and we use a number of novel processes, what we do is basic ceramic processing," he said. "The key to achieving transparency is reaching a level of perfection at each stage of the process, which most applications do not require."
"Theory and computational modeling are needed to understand how to shrink pores and limit grain growth," said NSF program director Lynnette Madsen. "And we are in desperate need for tools to monitor nanometer-size pores and grains during the final stage of the sintering process."
According to Madsen, advances such as these will lead to the development of better techniques for making bulk, nanostructured ceramics. "Not only will this research have a positive impact on many essential applications, it will alter how materials science is taught to students," she said.
Investigators
Gary Messing
Adam Stevenson
Venkatraman Gopalan
Related Institutions/Organizations
Pennsylvania State Univ University Park
####
About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.
For more information, please click here
Contacts:
Holly Martin
National Science Foundation
Copyright © National Science Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Photonics/Optics/Lasers
Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |