Home > Press > Label free sensing with silicon nanowires
Abstract:
Nanoscale electronic devices have the potential to achieve exquisite sensitivity as sensors for the direct detection of molecular interactions, thereby decreasing diagnostics costs and enabling previously impossible sensing in disparate field environments. Semiconducting nanowire-field effect transistors (NW-FETs) hold particular promise, though contemporary nanowire approaches are inadequate for realistic applications.
As a part of its ongoing efforts to improve the UK sensing innovation by transferring knowledge to businesses, the Micro and Nano Sensors Interest Group (MiNSIG) of the Sensors and Instrumentation KTN is organising a free online seminar titled ‘Label free sensing with silicon nanowires' on 12th February 2009 at 15.00- 16.00 GMT. The speaker of this event is Prof. Mark Reed, the Harold Hodgkinson Chair of Engineering and Applied Science at Yale University, and the Associate Director of the Yale Institute for Nanoscience and Quantum Engineering. . Mark is the author of more than 175 professional publications and 6 books, has given 17 plenary and over 265 invited talks, and holds 25 U.S. and foreign patents. Mark received several awards including the IEEE Pioneer Award in Nanotechnology (2007), Fellow of the American Physical Society (2003), the Fujitsu ISCS Quantum Device Award (2001) and the Kilby Young Innovator Award (1994). His research interests include the investigation of electronic transport in nanoscale, molecular, and mesoscopic systems.
The seminar will discus recent developments in nanowire sensors and a novel sensing approach using complementary metal-oxide-semiconductor (CMOS) technology that has not only achieved unprecedented sensitivity, but simultaneously facilitates system-scale integration of nanosensors for the first time. The advantage of the technology is that it enables a wide range of label-free biochemical and macromolecule sensing applications, including cell type discrimination through the monitoring of live, stimulus-induced cellular response, and specific protein and complementary DNA recognition assays. An important achievement is the introduction of real-time, unlabeled detection capability, allowing for fundamental studies of cellular activation, and specific macromolecule interactions at femtomolar concentrations. The talk will also discuss specific aspects of microfluidic integration and Debye screening along with a demonstration of live cell peptide-specific immunoresponse. This new approach provides a method for creating nanodevices that allows them to integrate directly with microelectronic systems. This novel technology has broad application for low-cost, highly sensitive detection of molecules including biomolecules for medical diagnostics and therapeutics.
The event is free to all, however due to limited space availability, registration is required. To secure the place please send an email to Tiju Joseph, Further information of the event and joining instructions can be obtained by contacting the Sensors & Instrumentation KTN at +44 (0) 20 8943 6594 or by visiting the website:
sensors.globalwatchonline.com/epicentric_portal/site/sensors/menuitem.691fc047589dba54a0f3b5308380e1a0/?mode=0
####
For more information, please click here
Contacts:
Tiju Joseph
+44 (0) 20 8943 6594
Copyright © Sensors & Instrumentation KTN
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||