Home > Press > Nanomaterials: An Environmental Pandora’s Box?
Abstract:
Thanks to emerging technologies and other advances, nano-enabled products and materials are appearing more often in our environment. But these products may hold unknown risks or dangers to ecosystems and the people who use them because of multilayered interactions involving nanotechnology and nanoparticles. A special open-access issue of Environmental Toxicology and Chemistry examines these issues.
The term nanoparticle refers to the size of a solid particle. The chemistry of nanoparticles is diverse. Research shows that these particles differ dramatically in their environmental properties and toxicities.
Colloidal nanoparticles in bulk form are used commercially as sunscreens, cosmetics, and protective coatings. The estimated economic impact of nanoparticles in industrial, consumer, and medical products will be $292 billion by 2010 and $1 trillion by 2015.
Findings indicate that many nonparticles are not exceptionally toxic to standard test organisms, however additional research is needed to ensure appropriate methods are being used and the most highly exposed and sensitive organisms are being tested.
"Nanotechnology will be critical to solving global problems facing the environment and its inhabitants; however, the broad scope of the health and safety research as well as the pace at which data are needed to protect human health and the environment exceed current research efforts," writes Sally S. Tinkle in the introductory column for this special issue of Environmental Toxicology and Chemistry.
Articles in this special issue of Environmental Toxicology and Chemistry, published by the Society of Environmental Toxicology and Chemistry, highlight these key findings:
· Nanoparticles can be toxic either due to metals associated with their structure or by themselves.
· Ingestion of nanoparticles by terrestrial insects can affect metabolic processes.
· Oxidative stress can affect fish health when antioxidant defenses are insufficient.
· Absorption onto algal cell walls can cause toxicity.
· Growth of some garden vegetables—for example, the tomato—can be affected while others—onion and cucumber—are not.
· Metals in quantum dots can be transferred to higher trophic levels.
· Different and possibly particle-specific approaches will be needed to fully determine environmental consequences.
Scientists and members of groups like the Society of Environmental Toxicology and Chemistry are working to develop methods and generate data that will allow for the evaluation of the risk of nanoparticles in the environment. With these evaluations, people will be able to enjoy the benefits of nanoparticles—in fields such as medicine, renewable energy, improved fuels and combustion, and other consumer products—while ensuring the compatibility of these technologies with the environment.
This special issue of Environmental Toxicology and Chemistry is the largest and most comprehensive set of nanotechnology papers to date. Open access to the articles in this issue will be available for six months at
www.setacjournals.org/perlserv/?request=get-toc&issn=1552-8618&volume=27&issue=9
####
About Environmental Toxicology and Chemistry
Environmental Toxicology and Chemistry is published by the Society of Environmental Toxicology and Chemistry. The journal is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences
For more information, please click here
Contacts:
Amy Schneider
Allen Press, Inc.
800/627-0326 ext. 412
Copyright © Environmental Toxicology and Chemistry
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Environment
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Safety-Nanoparticles/Risk management
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||