Home > Press > Make your own microfluidic device with new kit from U-M
Abstract:
A type of device called a "lab-on-a-chip" could bring a new generation of instant home tests for illnesses, food contaminants and toxic gases. But today these portable, efficient tools are often stuck in the lab themselves. Specifically, in the labs of researchers who know how to make them from scratch.
University of Michigan engineers are seeking to change that with a 16-piece lab-on-a-chip kit that brings microfluidic devices to the scientific masses. The kit cuts the costs involved and the time it takes to make a microfluidic device from days to minutes, says Mark Burns, a professor in the departments of Biomedical Engineering and Chemical Engineering who developed the device with graduate student Minsoung Rhee.
"In a lot of fields, there can be significant scientific advances made using microfluidic devices and I think that has been hindered because it does take some degree of skill and equipment to make these devices," Burns said. "This new system is almost like Lego blocks. You don't need any fabrication skills to put them together."
A lab-on-a-chip integrates multiple laboratory functions onto one chip just millimeters or centimeters in size. It is usually made of nano-scale pumps, chambers and channels etched into glass or metal. These microfluidic devices that operate with drops of liquid about the size of the period at the end of this sentence allow researchers to conduct quick, efficient experiments. They can be engineered to mimic the human body more closely than the Petri dish does. They're useful in growing and testing cells, among other applications.
Burns' system offers six-by-six millimeter blocks etched with different arrangements of grooves researchers can use to make a custom device by sticking them to a piece of glass. Block designs include inlets, straight channels, Ts, Ys, pitchforks, crosses, 90-degree curves, chambers, connectors (imprinted with a block M for Michigan), zigzags, cell culture beds and various valves. The blocks can be used more than once.
Most of the microfluidic devices that life scientists currently need require a simple channel network design that can be easily accomplished with this new system, Burns said. To demonstrate the viability of his system, he successfully grew E. coli cells in one of these modular devices.
Burns believes microfluidics will go the way of computers, smaller and more personal as technology advances.
"Thirty or 40 years ago, computing was done on large-scale systems. Now everyone has many computers, on their person, in their house…. It's my vision that in another few decades, you'll see this trend in microfluidics," Burns said. "You'll be analyzing chicken to see if it has salmonella. You'll be analyzing yourself to see if you have influenza or analyzing the air to see if it has noxious elements in it."
A paper on the new system called "Microfluidic assembly blocks" will be published in Lab on a Chip.
####
About University of Michigan
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.
For more information, please click here
Contacts:
Nicole Casal Moore
Phone: (734) 647-1838
Copyright © University of Michigan
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
A paper on the new system called "Microfluidic assembly blocks."
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||