Home > Press > ESF conference probes water's interactions at molecular level
Abstract:
Some of the most challenging problems in science concern the behaviour of the most commonplace compound on the planet's surface - water. But some of the mysteries are now being unravelled by the latest analysis and imaging techniques in an unfolding story that was presented at a recent conference organised by the European Science Foundation (ESF) focusing on interaction between water and other compounds at the molecular level.
Some of the greatest puzzles involve the interaction between molecules of water and other compounds as they come into proximity. These problems are not purely academic, because they have vital implications for understanding many important processes and biochemical reactions within organisms, some of them implicated in human disease. The molecular properties of water also have great importance for materials science, nanotechnology, and the semiconductor industry.
The underlying problem is that at the molecular level the behaviour of water and particularly interactions with other substances is extremely complex, and correspondingly difficult to explain in a few words. Before some of the exotic effects can be exploited, they must be thoroughly understood, and this in turn depends upon being able to observe the processes in some way. A major focus of the ESF conference was on new techniques for revealing information about the behaviour of water at the molecular scale in different circumstances, according to the conference's chair Marie-Clare Bellissent-Funel. 'Various techniques were used to reveal information of water at solid, soft, vapour, protein, membrane, and other interfaces,' she said.
High resolution x-ray diffraction is an important technique for analysing water molecules at interfaces, observing the way high-energy x-ray beams are scattered at the points of interaction. The location and orientation of individual water molecules can be detected that way, and already a lot has been learned about the crucial role played by them in critical biochemical reactions, including those involving docking or interactions between proteins. Water molecules also play a crucial role in ushering key components of biology such as metal ions into cells through permeable membranes, and details of further progress understanding the processes involved were presented at the conference. 'The understanding of such events could find application in development of medication and design of nanofluidic devices,' said Bellissent-Funel.
Such events can only be properly understood by analysing not just the static structure at a point in time, but the dynamic changes over time, and emerging techniques for this were also discussed at the ESF conference, as Bellissent-Funel pointed out. This is difficult to do at present purely by observation, but progress has been made by combining experiments with computer based simulations.
Such simulations incorporate a description of the unusual geometry of the water molecule, which is the source of all the strange and important properties of water. The molecule comprises an oxygen atom with two hydrogen atoms hanging off like Mickey Mouse ears. This gives the molecule an uneven distribution of electric charge, enabling it readily to form weak but significant hydrogen bonds with molecules of both water and other compounds.
Computer models are also being used to simulate behaviour of solutions, in which hydrogen bonds between molecules of water and the solute (substance being dissolved) prevent the latter conglomerating and therefore precipitating out. This is a function of water's 'interaction potential,' which means the ability or tendency of water molecules to form hydrogen bonds with other molecules. The ability to simulate the behaviour of interactions between water and solute molecules, rather than just between water molecules, represents an important development, said Bellissent-Funel.
The overall complexity of water interface physics was reflected at the ESF conference by the breadth and depth of the presentations, and also by the fact that key speakers were drawn from all over the world, including the US and Japan. But Bellissent-Funel emphasised that Europe had growing strengths and has been successful in recruiting new talent into this dynamic, challenging, and hugely promising field, even attracting some from outside the continent. 'It was clear from the short contributions and posters that there is an impressive set of young researchers in this general area, and also that some of them come originally from outside Europe,' said Bellissent-Funel. A key point is that these researchers by necessity span a range of disciplines across the whole scientific spectrum, reflecting the fundamental importance of water science.
####
About European Science Foundation
The European Science Foundation (ESF) is an association of 77 member organisations devoted to scientific research in 30 European countries. Since we were established in 1974, we have coordinated a wide range of pan-European scientific initiatives, and our flexible organisation structure means we can respond quickly to new developments.
ESF's core purpose is to promote high quality science at a European level.
The ESF is committed to facilitating cooperation and collaboration in European science on behalf of its principal stakeholders (Member Organisations and Europe's scientific community). This cross-border activity combines both 'top-down' and 'bottom-up' approaches in the long-term development of science.
The Foundation is committed to providing scientific leadership through its networking expertise and by ensuring that there is a European added value to all of its initiatives and projects.
For more information, please click here
Contacts:
European Science Foundation
1, quai Lezay Marnésia
BP 90015
F-67080 Strasbourg Cedex
France
Phone: +33 (0)3 88 76 71 00
Fax: +33 (0)3 88 37 05 32
Copyright © European Science Foundation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Water
Taking salt out of the water equation October 7th, 2022
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||