Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > MIT: Thermoelectric materials are 1 key to energy savings

Photo / Donna Coveney
Professor Mildred Dresselhaus, in the spectroscopy lab at MIT.
Photo / Donna Coveney
Professor Mildred Dresselhaus, in the spectroscopy lab at MIT.

Abstract:
Researchers jumpstart old field with new approach

MIT: Thermoelectric materials are 1 key to energy savings

Cambridge, MA | Posted on November 20th, 2007

Breathing new life into an old idea, MIT Institute Professor Mildred S. Dresselhaus and co-workers are developing innovative materials for controlling temperatures that could lead to substantial energy savings by allowing more efficient car engines, photovoltaic cells and electronic devices.

Novel thermoelectric materials have already resulted in a new consumer product: a simple, efficient way of cooling car seats in hot climates. The devices, similar to the more-familiar car seat heaters, provide comfort directly to the individual rather than cooling the entire car, saving on air conditioning and energy costs.

The research is based on the principle of thermoelectric cooling and heating, which was first discovered in the early 19th century and was advanced into some practical applications in the 1960s by MIT professor (and former president) Paul Gray, among others.

Dresselhaus and colleagues are now applying nanotechnology and other cutting-edge technologies to the field. She'll describe her work toward better thermoelectric materials in an invited talk on Monday, Nov. 26, at the annual meeting of the Materials Research Society in Boston.

Thermoelectric devices are based on the fact that when certain materials are heated, they generate a significant electrical voltage. Conversely, when a voltage is applied to them, they become hotter on one side, and colder on the other. The process works with a variety of materials, and especially well with semiconductors — the materials from which computer chips are made. But it always had one big drawback: it is very inefficient.

The fundamental problem in creating efficient thermoelectric materials is that they need to be very good at conducting electricity, but not heat. That way, one end of the apparatus can get hot while the other remains cold, instead of the material quickly equalizing the temperature. In most materials, electrical and thermal conductivity go hand in hand. So researchers had to find ways of modifying materials to separate the two properties.

The key to making it more practical, Dresselhaus explains, was in creating engineered semiconductor materials in which tiny patterns have been created to alter the materials' behavior. This might include embedding nanoscale particles or wires in a matrix of another material. These nanoscale structures — just a few billionths of a meter across — interfere with the flow of heat, while allowing electricity to flow freely. "Making a nanostructure allows you to independently control these qualities," Dresselhaus says.

She and her MIT collaborators started working on these developments in the 1990s, and soon drew interest from the US Navy because of the potential for making quieter submarines (power generation and air conditioning are some of the noisiest functions on existing subs). "From that research, we came up with a lot of new materials that nobody had looked into," Dresselhaus says.

After some early work conducted with Ted Harman of MIT Lincoln Labs, Harman, Dresselhaus, and her student Lyndon Hicks published an experimental paper on the new materials in the mid 1990s. "People saw that paper and the field started," she says. "Now there are conferences devoted to it."

Her work in finding new thermoelectric materials, including a collaboration with MIT professor of Mechanical Engineering Gang Chen, invigorated the field, and now there are real applications like seat coolers in cars. Last year, a small company in California sold a million of the units worldwide.

OTHER POTENTIAL APPLICATIONS

The same principle can be used to design cooling systems that could be built right into microchips, reducing or eliminating the need for separate cooling systems and improving their efficiency.

The technology could also be used in cars to make the engines themselves more efficient. In conventional cars, about 80 percent of the fuel's energy is wasted as heat. Thermoelectric systems could perhaps be used to generate electricity directly from this wasted heat. Because the amount of fuel used for transportation is such a huge part of the world's energy use, even a small percentage improvement in efficiency can have a great impact, Dresselhaus explains. "It's very practical," she says, "and the car companies are getting interested."

The same materials might also play a role in improving the efficiency of photovoltaic cells, harnessing some of the sun's heat as well as its light to make electricity. The key will be finding materials that have the right properties but are not too expensive to produce.

Dresselhaus and colleagues are continuing to probe the thermoelectric properties of a variety of semiconductor materials and nanostructures such as superlattices and quantum dots. Her research on thermoelectric materials is presently sponsored by NASA.

####

For more information, please click here

Contacts:
Elizabeth Thomson

617-258-5402

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project