Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NRL researchers develop optical technique for controlling electron spins in quantum dot ensembles

Abstract:
Scientists are closer to developing novel devices for optics-based quantum computing and quantum information processing, as a result of a breakthrough in understanding how to make all the spins in an ensemble of quantum dots identical. This understanding, based upon a new optical technique and announced recently by researchers at the Naval Research Laboratory (NRL), the University of Dortmund, and the University of Bochum, is an important step toward realization of such quantum devices based on solid-state technology. The complete findings of the study are published in the September 28, 2007, issue of the journal Science.

NRL researchers develop optical technique for controlling electron spins in quantum dot ensembles

Washington, DC | Posted on November 15th, 2007

An electron spin localized in a quantum dot is the quantum bit, which is the basic unit for solid-state based quantum computing and quantum information processing. The spin replaces a classical digital bit, which can take on two values, usually labeled 0 and 1. The electron spin can also take on two values. However, since it is a quantum object, it can also take all values in between. Obviously, such a quantum unit can hold much more information than a classical one and, even more importantly the use of such quantum bits makes certain computer calculations exponentially more efficient than those using a standard computer. That is why, scientists around the world are trying to find an efficient way to control and manipulate the electron spin in a quantum dot in order to enable new quantum devises using magnetic and electric fields.

Until now, the major problem with using charged quantum dots in such devices is that the electron spins in different quantum dots are never identical. The electron spin precession frequencies in an external magnetic field are different from each other due to small variations of the quantum dot shape and size. In addition, the electron spin precession frequency has a contribution of a random hyperfine field of the nuclear spins in the quantum dot volume. This makes a coherent control and manipulation of electron spins in an ensemble of quantum dots impossible and pushes researchers to work with individual spins and to develop single spin manipulation techniques, which are much more complicated than an ensemble manipulation technique.

The team of researchers at the University of Dortmund, NRL and the University of Bochum has taken a significant step toward solving this problem by suggesting a new technique that would allow coherent manipulations of an ensemble of electron spins. Last year in a Science publication (Science, vol. 313, 341 (2006)), the same research team demonstrated a method, whereby a tailored periodic illumination with a pulsed laser can drive a large fraction of electron spins (up to 30%) in an ensemble of quantum dots into a synchronized motion. In the new Science publication, the team shows that almost the whole ensemble of electron spins (90%) precesses coherently under periodic resonant excitation. It turns out that the nuclear contribution to the electron spin precession acts constructively by focusing the electron spin precession in different quantum dots to a few precession modes controlled by the laser excitation protocol, instead of acting as a random perturbation of electron spins, as it was thought previously. The modification of the laser protocol should allow scientists to reach a situation in which all electron spins have the same precession frequency, in other words to make all spins identical.

Future efforts involving the use of these identical electron spins will focus on demonstrating all coherent single q-bit operations using an ensemble of charged quantum dots. Another important use of such ensembles for quantum computing will be the demonstration of a quantum-dot gate operation. The macroscopic coherent precession of the electron spin ensemble will allow scientists to study several optical coherent phenomena, such as electromagnetically induced transparency and slow light, for example.

The research was conducted by Dr. Alex Greilich, Prof. Dmitri R. Yakovlev, Dr. Irina A. Yugova and Prof Manfred Bayer from the Institute Experimental Physics II of the University of Dortmund, Germany; Dr. Andrew Shabaev and Dr. Alexander L. Efros from NRL; and Dr. D. Reuter, and Prof. A. D. Wieck from the Physics Institute of the University of Bochum, Germany.

####

About Naval Research Laboratory
The Naval Research Laboratory is the Department of the Navy's corporate laboratory. NRL conducts a broad program of scientific research, technology, and advanced development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, DC, with other major sites at the Stennis Space Center, MS; and Monterey, CA.

For more information, please click here

Contacts:
NRL Public Affairs Office

202-767-2541

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project