Home > News > Joining up nanocircuits
November 5th, 2007
Abstract:
A team of scientists based in the UK and Germany have covalently bonded strings of porphyrin molecules on a gold surface - a step forward in the quest to develop nano-electronics.1
Other researchers have linked more than two molecules on surfaces as supramolecular structures before, but the patterns were held together only by non-covalent methods, such as hydrogen bonding and van der Waals interactions.
Non-covalent links are reversible and relatively fragile, says Stefan Hecht, chair of organic chemistry and functional materials at Humboldt University in Berlin and a member of the team. But covalent bonds are more stable and can transport electrical charge.
The team uses porphyrins, flat square-shaped molecules with four phenyl arms, one extending from each edge. The molecules are synthesized so that some or all the arms have a bromine atom at the end. The bromine atoms are removed by heating the molecules, leaving behind carbon radicals that combine through covalent carbon-carbon bonds, linking the porphyrin molecules.
Source:
rsc.org
Related News Press |
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |