Home > Press > Researchers set new record for brightness of quantum dots
Abstract:
By placing quantum dots on a specially designed photonic crystal, researchers at the University of Illinois have demonstrated enhanced fluorescence intensity by a factor of up to 108. Potential applications include high-brightness light-emitting diodes, optical switches and personalized, high-sensitivity biosensors.
"We are using photonic crystals in a new way," said Brian Cunningham, a professor of electrical and computer engineering and corresponding author of a paper published in the August issue of the journal Nature Nanotechnology. "We tune them to the specific wavelength of a laser used to stimulate the quantum dots, which couples the energy more efficiently and increases the brightness."
A quantum dot is a tiny piece of semiconductor material 2 to 10 nanometers in diameter (a nanometer is 1 billionth of a meter). When illuminated with invisible ultraviolet light, a quantum dot will fluoresce with visible light.
To enhance the fluorescence, Cunningham and colleagues at the U. of I. begin by creating plastic sheets of photonic crystal using a technique called replica molding. Then they fasten commercially available quantum dots to the surface of the plastic.
"We designed the photonic crystal to efficiently capture the light from an ultraviolet laser and to concentrate its intensity right within the surface where the quantum dots are located," said Cunningham, who also is affiliated with the university's Beckman Institute, the Micro and Nanotechnology Laboratory, and the Institute for Genomic Biology. "Enhanced absorption by the quantum dots is the first improvement we made."
Enhanced, directed emission from the quantum dots is the second improvement.
Quantum dots normally give off light in all directions. However, because the researchers' quantum dots are sitting on a photonic crystal, the energy can be channeled in a preferred direction - toward a detector, for example.
While the researchers report an enhancement of fluorescence intensity by a factor of up to 108 compared with quantum dots on an unpatterned surface, more recent (unpublished) work has exceeded a factor of 550.
"The enhanced brightness makes it feasible to use photonic crystals and quantum dots in biosensing applications from detecting DNA and other biomolecules, to detecting cancer cells, spores and viruses," Cunningham said. "More exotic applications, such as personalized medicine based on an individual's genetic profile, may also be possible."
Funding was provided by the National Science Foundation and SRU Biosystems. Part of the work was carried out in the university's Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.
####
For more information, please click here
Contacts:
James E. Kloeppel, Physical Sciences Editor
217-244-1073
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Dots/Rods
A new kind of magnetism November 17th, 2023
IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||