Home > Press > U.S.-Singapore team applying nanoelectronics to embedded computing
Abstract:
Computing researchers at Houston's Rice University and electronics specialists at Singapore's Nanyang Technological University (NTU) today announced the formation of the Institute for Sustainable Nanoelectronics (ISNE). The $2.6-million joint research initiative, valued at 4 million Singapore dollars, aims to slash the design and production costs for embedded microchips -- special-purpose computer chips that power everything from cell phones and digital cameras to jet airplanes and MRI machines.
Rice, Nanyang Tech collaborate on sustainable nanoelectronics
U.S.-Singapore team aims to leverage Moore's Law for embedded computing
Computing researchers at Houston's Rice University and electronics specialists at Singapore's Nanyang Technological University (NTU) today announced the formation of a $2.6-million Institute for Sustainable Nanoelectronics (ISNE). The joint research initiative, valued at 4 million Singapore dollars, aims to slash the design and production costs for embedded microchips -- special-purpose computer chips that power everything from cell phones and digital cameras to jet airplanes and MRI machines.
"A major goal of the collaboration is to help sustain Moore's Law and exploit the exponential rate at which electronic components have been shrinking for more than four decades," said Rice researcher Krishna Palem, the architect of the multinational initiative.
For instance, in a streaming video application on a cell phone, it's unnecessary to conduct precise calculations. The small screen, combined with the human brain's ability to process less-than-perfect pictures, results in a case where the picture looks just as good with a calculation that's only approximately correct.
"The key is tying the costs for design, energy consumption and production to the value that the computed information has for the user," Palem said.
ISNE is funded by and based at NTU. It will draw upon an International Network of Excellence directed by Palem. The broad-based network will include computing experts from elite organizations like NTU, Rice and the Georgia Institute of Technology.
"NTU is pleased to be collaborating with Rice to spearhead research in sustainable nanoelectronics," said NTU President Su Guaning. "Leveraging the strengths of NTU and Rice, both top technological universities, will no doubt bring about exciting breakthroughs. We are also glad to have Professor Palem, renowned for his computing methodology, head the ISNE."
The institute will partner with Rice's new Value of Information-based Sustainable Embedded Nanocomputing Center, or VISEN, which Palem recently established with seed funding from Rice.
"Rice and NTU are well-positioned to lead the search for sustainable new technologies in nanoelectronics," said Rice President David Leebron. "NTU is a leader in electronics and a well-known contributor to Singapore's economic vitality. Rice is a leader in engineering and nanotechnology, with a well-deserved reputation for international collaboration and the development and application of new ideas."
The institute hopes to evolve a design methodology that will be applicable not only to today's complementary metal-oxide semiconductors, or CMOS, but also to emerging computing platforms based on photonics and nanotechnology. The platform-independent approach is one of the institute's central themes, said Palem, who recently finished a yearlong appointment at the California Institute of Technology as a Gordon Moore Distinguished Scholar.
One example of the new "value-of-information" approach is probabilistic CMOS, or PCMOS, a new technology and an accompanying computing architecture invented within the past five years by Palem's research team. The key to PCMOS is a scheme that allows chips to trade off energy consumption at the cost of increased electronic "noise," which leads to slight processing errors.
The beauty of PCMOS is that most of today's chips are over-engineered for day-to-day applications. In prior research, Palem ran cell-phone-style streaming video applications in a side-by-side comparison on PCMOS chips and traditional, power-hungry cell-phone chips. An award-winning demonstration of the technique at a 2006 conference in Seoul, South Korea, wowed audiences, who saw no appreciable difference in picture quality, even though the PCMOS chips used five times less power. Palem and colleagues at NTU are currently testing the first-generation production prototype PCMOS chips.
"As information processing systems become more ubiquitous in consumer-driven applications, their designs must be tailored to reflect the needs of the end-users, and it is in this area that the new NTU/Rice Institute for Sustainable Nanoelectronics will make substantial contributions," said Ralph Cavin, chief scientist at the non-profit Semiconductor Research Corporation in Durham, N.C. "The institute's goal of developing design technologies for extremely-scaled CMOS, so that the consumer's needs are met at reduced cost, is well-aligned with emerging directions in integrated circuit applications."
Palem, who is the Ken and Audrey Kennedy Professor in Computer Science and professor of electrical and computer engineering, joined Rice's faculty July 1 from Georgia Tech, where he founded and directed the Center for Research in Embedded Systems and Technology.
"Krishna was recruited to Rice by the legendary computer scientist Ken Kennedy," said Sallie Keller-McNulty, dean of Rice's George R. Brown School of Engineering. "Ken was passionate about optimization, about making all computers -- be they supercomputers or smart devices - more efficient and easier to use. We're proud that Krishna is continuing the tradition of international excellence that Ken fostered at Rice."
####
About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.
For more information, please click here
Contacts:
Jade Boyd
PHONE: 713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||