Home > Press > Four universities collaborate to synthesize new materials, nanoscale devices
Abstract:
The Army Research Office has awarded a Multi-University Research Initiative (MURI) grant, potentially worth $7.5 million, to scientists from Virginia Tech, the University of Pennsylvania, Pennsylvania State University, and Drexel University to develop electromechanical devices and high-performance membranes using ionic liquids.
Virginia Tech chemistry professor Tim Long and University of Pennsylvania professor of materials science and engineering Karen I. Winey are co-directors of the Ionic Liquids in Electro-Active Devices (ILEAD) MURI. Long is principal investigator.
Ionic liquids (ILs) are relatively large organic salts that offer charge and liquidity at room temperature. Some ILs are touted as safe, environmentally-friendly solvents. They are also useful in electrically conductive membranes, thermally stable at high temperatures, and do not evaporate at normal conditions. With today's advanced ability to manipulate molecular structure and design unique molecules, ILs' advantages are being explored for emerging applications. "The Army needs a myriad of electronic devices that take advantage of the potential synergy of these unique properties," Long said.
The team is creating synthetic ILs and evaluating their performance in sophisticated electronic devices. "Our challenge is to synthesize high performance materials with a particular device in mind. Then the device is truly created from the molecular-scale up," said Long.
The group will integrate ILs into membranes to create thin films to perform various functions, such as membranes that can transport or filter small molecules. "Applications include fuel cell membranes, where protons are transported across a membrane to create electricity. One advantage over existing fuel cell materials is that the IL will not evaporate, so future membranes will operate at higher temperatures with higher efficiency."
Another application could be stimuli-responsive materials for micro sensors and smart clothes, said Long. "The material would breathe and wick moisture away, but quickly close up in response to a chemical or biological threat. Such a suit could be used by the military, by a firefighter, or in an operating room."
Membranes can also be created that will bend, stretch, or change shape in response to a low voltage, like an artificial muscle.
And ILs can be used in coatings or as part of structures. The team will look at creating new polymeric materials that can be charged or conductive, Long said.
"ILs will serve as the building blocks for elastomers, fibers, and rigid plastics for such uses as protective gear and multilayer assemblies," Long said. "We are recharging a field that has been around for a couple of decades because now we are challenged with applications that require IL performance."
The MURI is charged to provide fundamental enabling science for future Army technologies.
Senior researchers will focus in three areas. Long and Virginia Tech chemistry professor Harry W. Gibson will work on synthesis of ILs and charged polymers. Winey and Penn State professor of materials science and engineering Ralph H. Colby will do mechanical, electrical, and morphological characterization. Yossef Elabd, professor of chemical and biological engineering at Drexel University; Virginia Tech physics professor Randy Heflin; and Qiming Zhang, distinguished professor of electrical engineering at Penn State, will research performance of actuators, electro-optical devices, and membranes. Virginia Tech and Drexel are both Army Materials Centers of Excellence.
Industrial collaborators include DuPont, IBM Almaden, Kraton Polymers, NexGen Aeronautics, BASF, and Discover Technologies. "The industrial collaborators will validate related commercial interests, provide cost-effective manufacturing scenarios, and facilitate technology transfer for military technologies," said Long.
The ILEAD MURI will be administered through the Macromolecules and Interfaces Institute (MII) ( http://www.mii.vt.edu/ ) at Virginia Tech, and both fiscal management and program administration will be provided from both MII and the Virginia Tech Institute for Critical Science and Applied Technology ( http://www.eng.vt.edu/ictas/ ). Long and Winey will serve as technical co-directors of the MURI and will work jointly with the Army Research Office
( http://www.arl.army.mil/main/main/default.cfm?Action=29&Page=29 ) and multiple Army Research Lab sites to coordinate periodic technical reviews, reporting, and technical strategy. Student internships will be available at the Army labs.
####
About Virginia Tech
Founded in 1872 as a land-grant college named Virginia Agricultural and Mechanical College, Virginia Tech is now a comprehensive, innovative research university with the largest full-time student population in Virginia. Through a combination of its three missions of learning, discovery, and engagement, Virginia Tech continually strives to accomplish the charge of its motto: Ut Prosim (That I May Serve).
For more information, please click here
Contacts:
Susan Trulove
540-231-5646
Copyright © Virginia Tech
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Molecular Machines
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Nanotech scientists create world's smallest origami bird March 17th, 2021
Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020
Molecular Nanotechnology
Quantum pumping in molecular junctions August 16th, 2024
Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Military
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||