Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Clarkson Physics Prof Synthesizes Brightest Fluorescent Particles Ever

Abstract:
Microscopic Particles Have Applications in Medicine, Forensic Science, Environmental Protection

Clarkson Physics Prof Synthesizes Brightest Fluorescent Particles Ever

Potsdam, NY | Posted on April 3rd, 2007

Clarkson University Physics Professor Igor Sokolov and his team have discovered a method of making the brightest ever synthesized fluorescent silica particles.

These nanostructured macroscopic silica particles have potential applications in medicine, forensic science and environmental protection, among many other uses. Sokolov's research is published in the March 5 issue of the scientific journal Small. You can see the full article at
http://www3.interscience.wiley.com/cgi-bin/fulltext/114088575/HTMLSTART .

Sokolov, along with Ph.D. student Yaroslav Y. Kievsky (now a research fellow at the National Research Council of Canada) and Clarkson undergraduate student Jason M. Kaszpurenko, has created a process to physically entrap a large number of organic fluorescent molecules inside a nanoporous silica matrix. The fluorescence of these particles is 170 times brighter than any particles of similar size created so far. The previous record was reached using quantum dots.

In fluorescence, an initial ignition light energizes molecules, then the molecules reemit the light with a different color. This phenomenon can be used in many different applications because it is easily detectable, using optical filters to remove the ignition light, leaving only the particles' light visible.

There are a multitude of applications for these microscopic "flashlights." These particles, which are less than 1/10th the size of a human hair, could be used like holograms to prove a product's authenticity, imbedded in various objects or fabric for tracking, or used like an "invisible ink" to prove that someone touched an object.

"You could use them like a UPC barcode, encoded and deciphered not in terms of light, but in terms of colors," says Sokolov. "Using only commercially available dyes, you could create and track about 100 trillion combinations of these 'UPC' color barcodes. Because these particles are so bright, it is possible to detect even a single colored particle easily."

There are also potential applications in environmental protection -- dispersing the particles into groundwater to see where it flows to or tracking sources of air pollution. "You could spray these particles into the air like dust," says Sokolov, "and easily collect them because they are so highly visible."

Sokolov sees an ultra-bright future for these fluorescent particles. Down the road he envisions particles that can change color in different acidities. "We have already patented particles that can change color because of temperature change," he says. "The next step is to create a particle that would be a whole laboratory, simultaneously detecting many chemical environment factors -- temperature, acidity, metal ions, etc.

"After that, we could make a nanobot, or smart drug, that would actively react to its environment, and be used, for example, in fighting cancer. Tumor tissue has a higher acidity than the surrounding tissue. As soon as the injected nanobot encountered the high acidity of a tumor, it would start releasing the drug it carries to kill the cancer."

Apart from a family of various sensors, Sokolov's team is now working on scaling down the size of these particles to nanosize (a thousand times smaller than now). "This should have a significant impact in biology," says Sokolov. "For example, you can create particles of different colors. These particles can be made 'sticky' to particular biological molecules inside cells. Then you can see those molecules easily. This fluorescent labeling helps to identify diseased cells and may show exactly what is causing the disease."

Sokolov works on these projects together with postdoctoral fellow Sajo P. Naik and graduate student Dmitry Volkov. Two undergraduate students, Jason M. Kaszpurenko and James O. Benson, both seniors majoring in physics, are also part of the team. "At Clarkson, there are opportunities for undergraduate students in frontier science work like this," says Sokolov. "They are more than welcome to come and work with us."

In fact, Kaszpurenko is a coauthor of the Small journal article and a co-inventor of a patent. Due in part to this undergraduate research experience, Kaszpurenko has been accepted for graduate work at UC Davis, where he will continue his physics studies.

Sokolov received a Ph.D. from Soviet Bureau of Standards (Russian NIST), Russia, and completed his postdoctoral work at the University of Toronto. His research interests include biological physics, Functional Nano/Biomaterials and Interfaces, and atomic force microscopy. Find out more at http://www.clarkson.edu/~isokolov .

Sokolov is part of Clarkson's Center for Advanced Materials Processing (CAMP), which is dedicated to developing Clarkson's research and educational programs in high-technology materials processing and focused on industrial concerns and meeting industrial needs. The Center is built on Clarkson's recognized expertise in colloid and surface science and fine particle technology.

####

About Clarkson University
Clarkson University, located in Potsdam, New York, is a private, nationally ranked university with a reputation for developing innovative leaders in engineering, business, the sciences, health sciences and the humanities. At Clarkson, 3,000 high-ability students excel in an environment where learning is not only positive, friendly and supportive but spans the boundaries of traditional disciplines and knowledge. Faculty achieves international recognition for their research and scholarship and connects students to their leadership potential in the marketplace through dynamic, real-world problem solving.

For more information, please click here

Contacts:
Michael P. Griffin
director of News & Digital Content Services
315-268-6716

Copyright © Clarkson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project