Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Chemist Inventor 'Sniffs' His Way to Prestigious $500,000 Lemelson-MIT Prize

Abstract:
Timothy M. Swager Recognized for Chemical Sensor Inventions Employing Molecular Wires

Chemist Inventor 'Sniffs' His Way to Prestigious $500,000 Lemelson-MIT Prize

Cambridge, MA | Posted on April 2nd, 2007

Dr. Timothy M. Swager has a nose for explosives. The John D. MacArthur Professor of Chemistry and department head at the Massachusetts Institute of Technology claims he can "almost always take a whiff of a chemical and make a pretty good guess as to what class a volatile compound might be in." But Swager's nose is nothing compared to the amplified chemical sensors he invented to detect vapors of common bomb-making chemicals, such as TNT.

For his entire body of inventive work, the Lemelson-MIT Program named Swager the 2007 winner of the $500,000 Lemelson-MIT Prize, the most-prestigious cash prize for invention in the United States. This year, the prize criteria were modified to specify the winner be a mid-career inventor who is rising in his or her field.

"The originality, practicality and timeliness of Dr. Swager's inventions made him a stand-out candidate for this year's $500,000 Lemelson-MIT Prize," said Merton Flemings, director of the Lemelson-MIT Program, which has given the award to an accomplished inventor for the past 12 years. "For instance, soldiers and Marines in Iraq are already benefiting from his explosive-detection inventions, and his molecular wire inventions will likely find application in a wide range of healthcare, environmental and security areas."

An Amplified Response

Among his many inventions, Swager and his colleagues invented amplifying fluorescent polymers that can attract nitro aromatic molecules, a class of chemicals typically used in explosives. In most molecular sensors, the strength of the emitted signal is proportional to the number of target molecules reaching the sensor. Therefore, they are usually not sensitive enough to detect very small trace amounts of the target substance.

Swager reasoned that if he designed a polymer chain that would carry a signal except when a single target molecule struck the chain, he would have an extraordinarily sensitive detector. Thus, if the target molecule were TNT, a bomb detection device could be constructed from the polymer.

"Imagine a string of holiday lights," Swager explained. "If I break one bulb, then that strand goes down. Moreover, imagine if I wire a bunch of strands together. If I break a single bulb in any one of them, then that brings the whole thing down. That broken bulb represents the TNT molecule or vapor you're trying to find. The interruption tells you something's there."

The TNT molecules can bind anywhere along the polymer chain. "It's random where the TNT will bind," Swager said, "so you give it as many opportunities to bind as it can possibly want."

The ‘Dog's Nose' Knows

In 2001, Swager licensed his patented polymer technology to Nomadics, now a unit of ICx Technologies, for use in that company's Fido® Explosives Detector, so named for its ability to simulate a bomb-sniffing dog.

"Fido doesn't have the computational power or the agility of a dog, but it has a similar sensitivity for certain things," Swager said. "Within some classes of chemicals, it can actually smell as well as a dog, which is important." Dogs also need trainers, can act unpredictably in unfamiliar environments, and can intimidate people, which Swager cites as other advantages of Fido.

Currently, American soldiers in Iraq are using Fido devices in two ways - either attached to a robotic platform for deployment to hard-to-reach and dangerous areas, or as a portable, hand-held monitor to analyze people, clothing and automobiles.

In 2005, Fido earned the U.S. Army Greatest Invention Award. General (Retired) Paul J. Kern, the former U.S. Army senior military advisor in Research, Development and Acquisition, wrote in a nomination letter for Swager, "It is not realistic to put a number on how many attacks have been prevented by early detection of bomb makers and IED's, but one could easily estimate that hundreds of individuals have avoided serious injury or death as a result of Swager's chemical inventions."

In addition to its use in Iraq, Fido has also been tested domestically. The National Park Police used hand-held units to screen bags on the Washington D.C. Mall during the July 4 celebration in 2006. Swager envisions the device also having applications in airports and building security.

A Range of Inventions

In addition to their use in explosives detection, Swager's molecular wire sensors have many other possible applications, from detecting environmental pollutants to early-stage cancer cells.

Some of his other inventions include lasing sensors that could someday improve building security; near-infrared optical imaging agents that may enable simpler techniques for screening and diagnosing Alzheimer's disease; as well as molecules with high-free volume that could improve the manufacture of semiconductors and liquid crystal displays.

An Example for Others

As an educator and researcher, Swager is widely recognized as an outstanding role model for young innovators. He encourages students to have a "healthy irreverence" to him and to constantly challenge their own thinking, as well. As a result, Swager's students are highly regarded for their intellect, work ethic, leadership and integrity.

Swager also serves on numerous government committees and task forces. He is a standing member of the National Research Council's Committee on Operational Science and Technology Options for Defeating Improvised Explosive Devices, and is currently in a working group that advises the Joint Improvised Explosive Device Defeat Organization (JIEDDO). Swager also co-wrote the proposal that established the Institute for Soldier Nanotechnology at MIT and was its initial associate director.

In addition to honoring Swager with the $500,000 Lemelson-MIT Prize, the Lemelson-MIT Program also announced the inaugural winner of its new $100,000 Lemelson-MIT Award for Sustainability. The award recognizes inventors whose products and processes enhance economic opportunity and community well-being in developing and/or developed countries, while protecting and restoring the natural environment. Lee Lynd, professor of engineering and adjunct professor of biology at Dartmouth College and co-founder of Mascoma Corp., received the award for a body of inventive work related to the conversion of cellulosic biomass into ethanol for fuel.

From May 2-5, Swager and Lynd will join the Lemelson-MIT Program for the first-ever EurekaFest, a multi-day celebration designed to empower a legacy of inventors through activities that inspire youth, honor role models, and encourage creativity and problem solving. EurekaFest is presented by the Lemelson-MIT Program in partnership with the Museum of Science, Boston. More information and a schedule of events are online at http://web.mit.edu/invent/eurekafest.html .

####

About The Lemelson-MIT Program
The Lemelson-MIT Program recognizes outstanding inventors, encourages sustainable new solutions to real-world problems, and enables and inspires young people to pursue creative lives and careers through invention.

Jerome H. Lemelson, one of the world’s most prolific inventors, and his wife Dorothy founded the Lemelson-MIT Program at the Massachusetts Institute of Technology in 1994. It is funded by the Lemelson Foundation, a private philanthropy that celebrates and supports inventors and entrepreneurs in order to strengthen social and economic life. More information on the Lemelson-MIT Program is online at http://web.mit.edu/invent/ .

For more information, please click here

Contacts:
Cone
Matt Paine / Paul Breton
617-939-8314 / 617-939-8316
/
or
Lemelson-MIT Program
Melissa Makofske / Kayla Willis
617-452-2170 / 617-258-0632
/

Copyright © Business Wire 2007

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project