Home > Press > UCR Scientist Develops Nano-scale Switch Design for Computers
Abstract:
University of California Professor Qing Jiang can imagine a computer that boots up immediately on powering up, that writes data directly onto its hard drive making saving a thing of the past.
In fact, Jiang, a professor of mechanical engineering at the Bourns College of Engineering, is designing the building blocks for this type of memory device using telescoping carbon nanotubes as high-speed, low power microswitches.
The design would allow the use of these binary or three-stage switches to become part of molecular-scale computers. Jiang and co-author Jeong Won Kang have published an article outlining this design, titled Electrostatically telescoping nanotube nonvolatile memory device, online in January by the Institute of Physics. The article will come out in print in the March 7 edition of the journal Nanotechnology.
Deceptively simple, the design involves inserting one hollow nanotube, closed at both ends, into a slightly larger one, open at both ends, creating a telescoping motion using an electrostatic charge. That contact between the nanotube and the electrodes creates a conduction pathway with three possible positions.
The authors suggest that future research should focus on carefully selecting the right material for the electrodes and addressing the phenomenon of rebounding by the nanotube actuator on the electrode.
The advantages that nanostructures such as quantum dots, carbon nanotubes and nanowires offer over their silicon-based predecessors include their tiny size, speed and their density, according to Jiang.
"One of the biggest problems for the current non-volatile memories (such as flash memory) is their low speeds," Jiang said. "We have demonstrated the speed of these devices using simulations switching times of around 10-11 seconds and data erasing times of around 10-12 seconds."
The potential of such molecular-scale processors have attracted the attention of major corporations such as Hewlett-Packard, IBM, Lucent, Motorola, Siemens and Hitachi to name a few. Jiang predicted a likely functioning prototype of a molecular processor could be demonstrated in the next two to three years.
####
About University of California Riverside
The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment of about 17,000 is projected to grow to 21,000 students by 2010. The campus is proposing a medical school and already has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. With an annual statewide economic impact of nearly $1 billion, UCR is actively shaping the region's future. To learn more, visit www.ucr.edu or call (951) UCR-NEWS.
For more information, please click here
Contacts:
Ricardo Duran
951.827.5893
Qing Jiang
Copyright © University of California Riverside
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The Bourns College of Engineering at UCR
Institute of Physics - Nanotechnology
Related News Press |
Chip Technology
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||