Home > News > Finding Solutions to Continued Scaling Efforts
February 6th, 2007
Finding Solutions to Continued Scaling Efforts
Abstract:
Chen's discussion of variability was not about the chip-to-chip, wafer-to-wafer or lot-to-lot variability, which can be solved. Also, regional variability — both systematic and random — can be solved as well. "The most important problem that we can't solve is the local systematic and random variability," he said. "It's what's going to kill technology advancement in this industry."
With this in mind, Chen turned his attention toward plans for the future — with options being to extend silicon CMOS (plan A), subsystem integration (plan B) or investing in non-silicon FETs or beyond FETs (plan C). Plan B shows some promise, Chen noted, pointing to such schemes as board-level optical interconnects and, more importantly, 3-D integration. Although 3-D integration has been used at the packaging level for several years, considerable gains could be made at the chip stack level, and even more at the CMOS level, he said. Coupled with low-power design, 3-D integration could offer a potential solution for system performance.
Plan C — options beyond CMOS — include such things as photonics, spintronics, quantum computing, and atomic/molecular configurations. Where IBM is investing a lot of time and money, Chen said, is with carbon nanotubes. "We think this is the most realistic alternative to a charge-transport-based system," he said. "We don't want to totally disrupt the existing infrastructure, and we think the carbon nanotube is the closest in that respect." Although spintronics is very promising, he added, that infrastructure would require a considerable change from what the industry is doing today.
Source:
reed-electronics.com
Related News Press |
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanoelectronics
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |