Home > Press > Illinois Researchers Break Billion Variable Optimization Barrier
Abstract:
A paper published today in the journal Complexity describes how a team of researchers in the Illinois Genetic Algorithms Laboratory (IlliGAL) at the University of Illinois at Urbana-Champaign (UIUC) has achieved efficient, scalable solutions on difficult optimization problems containing over a billion variables. The team led by noted researcher and author David E. Goldberg used specially programmed genetic algorithms (GAs)--search procedures based on natural selection and genetics--to achieve the feat, together with theories of scalability and implementation techniques developed at Illinois. Optimization uses mathematics and computation to find efficient, effective solutions to problems in science, technology, and commerce, and it is widely used in scheduling, engineering design, and business management. Procedures in common use today are limited to thousands, sometimes millions, of variables because the most powerful methods become prohibitively expensive as the size of the problem increases. The Illinois result proves that billion-variable problems can be solved effectively and practically on existing computers with known procedures.
The calculations were performed on subsets of the 1536-processor Turing cluster housed in UIUC's Computational Science and Engineering (CSE) program. CSE director, Michael Heath, greeted the accomplishment. "This is exactly the kind of paradigm-breaking computational result that we hoped to enable in creating the Turing cluster." UIUC material scientist, Duane Johnson suggested that the result "is a milestone in the developing world of nanotechnology, enabling the analysis and design of new molecules in ways that were not previously possible," and John Deere emerging technology guru Bill Fulkerson sees the results as heralding a new day of complex systems optimization more generally. "Gone are the days of using a toy genetic algorithm to solve a toy problem. With petascale computing and solvers like this, complex systems optimization becomes possible."
Other team members included Kumara Sastry, a PhD candidate in Industrial and Enterprise Systems Engineering and Xavier Llora, a machine learning researcher at the National Center for Supercomputing Applications (NCSA). Although the team is pleased with the billion-variable result, it is not resting on its laurels. Sastry put it this way: "One reason this result is so interesting is because it is so general. With most optimization procedures you are stuck solving a limited class of problems. This result is immediately useful to a broad array of problems, and existing theory and technique tells us how to speed results on larger, harder problems that would otherwise be prohibitively expensive or impossible." Goldberg is excited by the array of existing application areas that can benefit from the result. "Genetic algorithms have been used regularly for two decades across the spectrum of human endeavor. Science, engineering, commerce, and even the humanities and the arts have already benefited from myriad applications of genetic algorithms. The billion-variable result can be put to use immediately across the panoply of existing and yet-to-be-imagined application domains." Complexity editor-in-chief, Alfred Hübler welcomed the research as "spectacular." "Goldberg's team has achieved something special. This result advances complexity science and technology immediately and noticeably."
The work was sponsored by the Air Force Office of Scientific Research and the NSF-sponsored Materials Computation Center (MCC) at the UIUC.
The article is available at http://www3.interscience.wiley.com/cgi-bin/jhome/38804 .
####
About University of Illinois
At Illinois, research shapes the campus identity, stimulates classroom instruction and serves as a springboard for public engagement activities throughout the world. Opportunities abound for graduate students to develop independent projects and launch their own careers as researchers while working alongside faculty and assisting in their research. Illinois continues its long tradition of groundbreaking accomplishments with remarkable new discoveries and achievements that inspire and enrich the lives of people around the world.
For more information, please click here
Contacts:
DAVID GOLDBERG
University of Illinois
http://www-illigal.ge.uiuc.edu/
217-333-0897
Copyright © PRWeb
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Preparing for Nano
Disruptive by Design: Nano Now February 1st, 2019
How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016
Searching for a nanotech self-organizing principle May 1st, 2016
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Human Interest/Art
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
JEOL Announces 2020 Microscopy Image Grand Prize Winners January 7th, 2021
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||