Home > Press > HENCI Technology Revolutionizes Ex-Situ Nanocatalysis
Abstract:
HENCI technology completely immobilizes and retains nano-particles /structures / catalysts in fluid flow in a fundamentally new way, resulting in fluid dynamic, mass-transport, and process-cost efficiencies much greater than conventional methods, unleashing, for the first time ever, the immense potential of nano-structures for dozens of previously impractical large-scale ex-situ applications.
The New High Efficiency Nano-Catalyst Immobilization (HENCI) technology by Cross Technologies is unleashing, for the first time ever, the immense potential of nanocatalysis for large-scale Groundwater Remediation (GWR): to treat recalcitrant carcinogen-contaminated groundwater (often to potable quality) on-demand, at any throughput, in a small, inexpensive, well-head / point-of-distribution / mobile unit, by eliminating carcinogenics altogether (chemically breaking them down into benign species, not simply trapping them in a medium, concentrating them in an effluent or evaporating them to our air). With process-cost efficiencies literally orders of magnitude greater than conventionally available technologies, HENCI facilitates the use of nano-catalysts (NCs) in a completely new way, opening the flood-gates for the application of nanotechnology to environmental and industrial nano-catalytic and -sorbtive processes.
The new genres of nano-sized catalysts are very exciting. When polluted water is exposed to them, rapid and complete catalytic destruction, i.e. chemical breakdown to benign species, of at least 40 recalcitrant carcinogenic groundwater pollutants has been shown to take place. Pollutants include chlorinated alkanes, alkenes and aromatics, THMs, DDT, Lidane, PCBs, Dioxins, TNT, NDMA, Organic Dyes, dichromates, perchlorate, pharmaceutical residuals, and others of immediate concern, many on the EPA-'Hotlist' (section 307, CWA). Hence, the desire to use highly effective NCs for various large-scale ground water remediation (GWR) applications is well established. However, the attribute most important to their high-efficacy - their nano-scale size - is also their Achilles' heel, and has greatly inhibited their commercialization via both in-situ and ex-situ operation. Why? Firstly, no method for in-situ use of NCs has proven truly viable, including sub-surface injection, reactive barriers, or in-situ surface treatment (NCs added to surface-storage tanks to break down pollutants before water is used). This is because most NCs are themselves toxic, so any in-situ use necessitates that, after exposure, all the NCs, in turn, be completely removed from the treated water prior to use. Because these particles are so small (and numerous), high-performance R.O./Nano-filtration is usually required to accomplish such removal, rendering the overall operation much too expensive.
Thus, on-demand ex-situ use of NCs has been proposed as a superior alternative because it eliminates the need for post-reaction removal of the NCs by 'immobilizing' them (usually on or within a support media) - preventing them from entering into solution in the treated water in the first place. As such, ex-situ operation is theoretically conducive to more-efficient 'continuous' processing, e.g. in a flow-through reactor. Until HENCI, however, no immobilization technology was even close to being viable for field application, as all fell short of meeting the seven formidable engineering challenges / criteria necessary for cost-effective immobilization NCs for any practical applications:
HENCI-facilitated nanocatalysis meets all these criteria, and is thus uniquely poised to usher in a new era in GWR marked by our ability to easily process polluted groundwaters to potable quality with a true leap in environmental benevolence, let alone the benefits to be reaped in commercial applications.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Products
Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018
Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018
Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018
Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Water
Taking salt out of the water equation October 7th, 2022
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||