Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multipurpose Nanocables Invented

Abstract:
Nanocables could become key parts of toxin detectors, miniaturized solar cells and powerful computer chips.

Multipurpose Nanocables Invented

Davis, CA – November 16, 2004

Tiny nanocables, 1,000 times smaller than a human hair, could become key parts of toxin detectors, miniaturized solar cells and powerful computer chips.

The technique for making the nanocables was invented by UC Davis chemical engineers led by Pieter Stroeve, professor of chemical engineering and materials science. They manufacture the cables in the nano-sized pores of a template membrane. The insides of the pores are coated with gold. Layers of other semiconductors, such as tellurium, cadmium sulfide or zinc sulfide, are electrochemically deposited in the gold tube until a solid cable forms, then the membrane is dissolved, leaving finished cables behind.

Stroeve envisions many uses for these nanocables. For example, the cables' ability to conduct electricity changes when they are exposed to different chemicals or toxins. Earlier nano-devices could only detect whether a toxin was present, said Ruxandra Vidu, a postdoctoral scholar working with Stroeve. But nanocables will go further, measuring the quantity of toxins.

Stroeve's team can also construct arrays of nanocables. "You put a copper tape on the tops of the nanocables before the template is dissolved," Stroeve said. "You're left with nanocables sticking up at right angles from the tape."

These arrays have a very large surface area -- 1000 times greater than on a flat device of the same size. They could be used to efficiently capture sunlight in a tiny solar cell.

Nanocables could also be used to make computer chips more powerful by packing transistors closer together. Computers now contain silicon chips with metal transistors affixed to the surface. "With our new technique, we could embed transistors into the silicon chips to begin with," Stroeve said.

The work is published online in the Journal of the American Chemical Society.

Media Contacts:
Pieter Stroeve
Chemical Engineering and Materials Science
(530) 752-8778
pstroeve@ucdavis.edu

Andy Fell
UC Davis News Service
(530) 752-4533
ahfell@ucdavis.edu

Copyright © UC Davis

If you have a comment, please us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanoelectronics

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project