Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions

Rods of multivariate MOFs (left) can be programmed with different metal atoms (colored balls) to do a series of chemical tasks, such as controlled drug release, or to encode information like the ones and zeros in a digital computer.

CREDIT
UC Berkeley image by Omar Yaghi and Zhe Ji
Rods of multivariate MOFs (left) can be programmed with different metal atoms (colored balls) to do a series of chemical tasks, such as controlled drug release, or to encode information like the ones and zeros in a digital computer. CREDIT UC Berkeley image by Omar Yaghi and Zhe Ji

Abstract:
Artificial molecules could one day form the information unit of a new type of computer or be the basis for programmable substances. The information would be encoded in the spatial arrangement of the individual atoms - similar to how the sequence of base pairs determines the information content of DNA, or sequences of zeros and ones form the memory of computers.

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions

Berkeley, CA | Posted on August 11th, 2020

Researchers at the University of California, Berkeley, and Ruhr-Universität Bochum (RUB) have taken a step towards this vision. They showed that atom probe tomography can be used to read a complex spatial arrangement of metal ions in multivariate metal-organic frameworks.

Metal-organic frameworks (MOFs) are crystalline porous networks of multi-metal nodes linked together by organic units to form a well-defined structure. To encode information using a sequence of metals, it is essential to be first able to read the metal arrangement. However, reading the arrangement was extremely challenging. Recently, the interest in characterizing metal sequences is growing because of the extensive information such multivariate structures would be able to offer.

Fundamentally, there was no method to read the metal sequence in MOFs. In the current study, the research team has successfully done so by using atom probe tomography (APT), in which the Bochum-based materials scientist Tong Li is an expert. The researchers chose MOF-74, made by the Yaghi group in 2005, as an object of interest. They designed the MOFs with mixed combinations of cobalt, cadmium, lead, and manganese, and then decrypted their spatial structure using APT.

Li, professor and head of the Atomic-Scale Characterisation research group at the Institute for Materials at RUB, describes the method together with Dr. Zhe Ji and Professor Omar Yaghi from UC Berkeley in the journal Science, published online on August 7, 2020.

Just as sophisticated as biology

In the future, MOFs could form the basis of programmable chemical molecules: for instance, an MOF could be programmed to introduce an active pharmaceutical ingredient into the body to target infected cells and then break down the active ingredient into harmless substances once it is no longer needed. Or MOFs could be programmed to release different drugs at different times.

"This is very powerful, because you are basically coding the behavior of molecules leaving the pores," Yaghi said.

They could also be used to capture CO2 and, at the same time, convert the CO2 into a useful raw material for the chemical industry.

"In the long term, such structures with programmed atomic sequences can completely change our way of thinking about material synthesis," write the authors. "The synthetic world could reach a whole new level of precision and sophistication that has previously been reserved for biology."

###

The work was supported by the Center of Excellence for Nanomaterials and Clean Energy Applications at King Abdulaziz City for Science and Technology.

####

For more information, please click here

Contacts:
Robert Sanders

510-915-3097

@UCBerkeley

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Projecting light to dispense liquids: A new route to ultra-precise microdroplets January 30th, 2026

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

News and information

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Synthetic Biology

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Seattle Hub for Synthetic Biology launched by Allen Institute, Chan Zuckerberg Initiative, and the University of Washington will turn cells into recording devices to unlock secrets of disease: First-of-its-kind research initiative will develop technologies to reveal how changes i December 8th, 2023

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Announcements

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project