Home > Press > Photochromic bismuth complexes show great promise for optical memory elements
![]() |
Working routine in Center for Energy Science and Technology. CREDIT Timur Sabirov / Skoltech |
Abstract:
Russian chemists obtained a new photochromic complex composed of of bismuth (III) and viologen cations and used the new compound to create optical memory elements which were shown to be highly efficient and stable. The outcomes of the study may serve to expand the range of microelectronics components in the future. The research was published in the journal Chemical Communications.
Modern memory devices, such as memory cards and SSD drives, are based on electrical switches known as transistors, which can form two quasi-stable electrical states due to the presence of additional components capable of accumulating and storing electrical charge. The value of this charge enables or disables electric current through transistor at certain read voltage. In memory elements, the high current or "open" and low current or "closed" states correspond to logic 1 and logic 0, respectively, or vice versa. To write or erase one bit of information, the transistor should switch from one state to the other. In the case of photochromic materials, i.e. materials that change color when exposed to light, the switching requires a pulse of light and, quite often, superposition of the electric field, too.
Viologen cations consist of two linked aromatic pyridine rings (C10H8N2R2)2+ with two substituents (R) at the nitrogen atoms. Some halide metal and viologen complexes, i.e. those that contain elements of the seventh group of the Periodic Table (F, Cl, Br, and I), can change color when exposed to light. These compounds have not yet found application in electronics despite their highly appealing optoelectronic characteristics. For the first time ever, a group of scientists from the Skolkovo Institute of Science and Technology (Moscow), the Institute of Problems of Chemical Physics of RAS (Chernogolovka) and the Nikolaev Institute of Inorganic Chemistry of SB RAS (Novosibirsk) led by Skoltech professor Pavel Troshin succeeded in designing a photosensitive bismuth complex with optimal properties and demonstrated that it can be successfully used as advanced optically triggered material for memory devices.
"Earlier, we showed the prospects of using organic photochromic materials in photoswitchable field-effect transistors and optical memory elements. Recently, we looked into a series of dihetarylethene derivatives and established very important correlations between their structure and properties. In the current study, we have made a step forward along this avenue of research by using metal compounds in optical switches and memory elements," explains Lyubov Frolova, a senior research scientist at Skoltech.
The researchers assembled organic field-effect transistors with an additional photosensitive layer made of the bismuth complex with viologen cations. As an intermediate device frabrication step, the complex was crystallized as a film from a solution on a dielectric aluminum oxide layer. The scientists found that the device can be "programmed" by simultaneously applied light pulse and electric bias between the device electrodes, which results in the device switching between two or more quasi-stable electrical states. Having multiple states in the transistor opens up great prospects for creating multi-bit memory elements for high-density data recording.
The current running through the transistor channel can be modulated by 100 times in half a second and by 10,000 times in several tens of seconds of "programming". This figure points to high efficiency of the devices, which matches the characteristics of the best organic photosensitive field-effect transistors known to date. The authors assume that their devices will have long-term data storage capacity and will be able to withstand many write-read-erase cycles. The recent research has demonstrated their stable operation in over 200 cycles.
####
For more information, please click here
Contacts:
Ilyana Zolotareva
897-777-14699
Copyright © Skolkovo Institute of Science and Technology (Skoltech)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Memory Technology
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023
Optical computing/Photonic computing
Programmable electron-induced color router array May 14th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Photonics/Optics/Lasers
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Programmable electron-induced color router array May 14th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |