Home > Press > Solid-state intramolecular motions in continuous fibers for fluorescent humidity sensor
![]() |
Schematic illustration of fluorescence variation of AIE/polymer fiber sensor when exposed to water molecules. CREDIT ©Science China Press |
Abstract:
Taking advantages of intramolecular motion of D-A based aggregation-induced emission (AIE) molecular rotors and one-dimensional (1D) polymer fibers, highly sensitive optical fiber sensors that respond to ambient humidity rapidly and reversibly with observable chromatic fluorescence change are developed. Moisture environments induce the swelling of the polymer fibers, activating intramolecular motions of AIE molecules to result in red-shifted fluorescence and linear response to ambient relative humidity (RH). In this case, polymer fiber provides a process-friendly architecture and a physically tunable medium for the embedded AIE molecules to manipulate their fluorescence response characteristics.
Intramolecular motions of AIE molecules driven by ambient humidity. D-A based AIE molecules contain three segments: an electron-donating tetraphenylethene (TPE) group, an electron-accepting pyridinium salt unit, and a spacer unit of single (TPE-P)/double (TPE-EP) bond. The highly twisted TPE group with four phenyl rings ensures the intramolecular twisted-motion in the solid state, while intramolecular rotation of D-A subgroups based on the twisted intramolecular charge-transfer (TICT) effect achieves local polarity sensing. Combining AIE and TICT effects that manipulated by the intramolecular motions, a sensitive humidity sensor is developed by embedding AIE molecules into a water-captured polymer.
Dry spinning AIE/polymer microfiber sensor. Dry-spinning technology is utilized to fabricate AIE/polymer microfibers, and polyvinylpyrrolidone (PVP) is chosen as a material support. AIE/PVP micro-fibrous film shows chromatic fluorescence response and linear response to ambient humidity, serving as sensitive woven fabrics for spatial-temporal humidity mapping. Assembly of microfibers and UV silicone tube could be integrated to develop fiber-shaped flexible device, which can act as a built-in sensor for easy identification of RH and also be able to serve as color-tunable lighting for smart displays.
Electro-spinning AIE/polymer nanofiber sensor. Polyacrylic acid (PAA) nanofibers from electro-spinning characterized with large surface area, high porosity, and fine flexibility, are used as a physical medium for AIE molecules to achieve instant humidity response sensitivity. The nanofibrous nonwoven membranes show ultrafast response and recovery (< 1 s) to a neglectable amount of water, which can be applied as axial positioning interface for future integrated wearable systems.
The mechanism of intramolecular motion of AIE molecules has been demonstrated for developing highly sensitive AIE/polymer fiber sensor. The fluorescence response performance is amplified by refining the fiber structure and changing the chemical structure of polymers. Additionally, fibrous sensors can be used to build various architectures, facilitating multifunctionality in terms of spatial humidity mapping, high device-integration capability, and touchless positioning. The strategy of combining AIE and 1D fiber structure will not only provide a new route for humidity sensor, but also serve as artificial nerves to sense wide environmental stimuli.
###
This research received funding from the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China, the Science and Technology Commission of Shanghai Municipality, the National Key Research and Development Program of China, the Program for Changjiang Scholars and Innovative Research Team in University, and International Joint Laboratory for Advanced Fiber and Low-Dimension Materials.
####
About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.
For more information, please click here
Contacts:
Yanhua Cheng
Copyright © Science China Press
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Flexible Electronics
Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Sensors
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |