Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Process for 'two-faced' nanomaterials may aid energy, information tech

Selenium atoms, represented by orange, implant in a monolayer of blue tungsten and yellow sulfur to form a Janus layer. In the background, electron microscopy confirms atomic positions.

CREDIT
Oak Ridge National Laboratory, U.S. Dept. of Energy
Selenium atoms, represented by orange, implant in a monolayer of blue tungsten and yellow sulfur to form a Janus layer. In the background, electron microscopy confirms atomic positions. CREDIT Oak Ridge National Laboratory, U.S. Dept. of Energy

Abstract:
A team led by the Department of Energy's Oak Ridge National Laboratory used a simple process to implant atoms precisely into the top layers of ultra-thin crystals, yielding two-sided structures with different chemical compositions. The resulting materials, known as Janus structures after the two-faced Roman god, may prove useful in developing energy and information technologies.

Process for 'two-faced' nanomaterials may aid energy, information tech

Oak Ridge, TN | Posted on June 26th, 2020

"We're displacing and replacing only the topmost atoms in a layer that is only three atoms thick, and when we're done, we have a beautiful Janus monolayer where all the atoms in the top are selenium, with tungsten in the middle and sulfur in the bottom," said ORNL's David Geohegan, senior author of the study, which is published in ACS Nano, a journal of the American Chemical Society. "This is the first time that Janus 2D crystals have been fabricated by such a simple process."

Yu-Chuan Lin, a former ORNL postdoctoral fellow who led the study, added, "Janus monolayers are interesting materials because they have a permanent dipole moment in a 2D form, which allows them to separate charge for applications ranging from photovoltaics to quantum information. With this straightforward technique, we can put different atoms on the top or bottom of different layers to explore a variety of other two-faced structures."

This study probed 2D materials called transition metal dichalcogenides, or TMDs, that are valued for their electrical, optical and mechanical properties. Tuning their compositions may improve their abilities to separate charge, catalyze chemical reactions or convert mechanical energy to electrical energy and vice versa.

A single TMD layer is made of a ply of transition metal atoms, such as tungsten or molybdenum, sandwiched between plies of chalcogen atoms, such as sulfur or selenium. A molybdenum disulfide monolayer, for example, features molybdenum atoms between plies of sulfur atoms, structurally similar to a sandwich cookie with a creamy center between two chocolate wafers. Replacing one side's sulfur atoms with selenium atoms produces a Janus monolayer, akin to swapping one of the chocolate wafers with a vanilla one.

Before this study, turning a TMD monolayer into a two-faced structure was more a theoretical feat than an actual experimental accomplishment. In the many scientific papers about Janus monolayers published since 2017, 60 reported theoretical predictions and only two described experiments to synthesize them, according to Lin. This reflects the difficulty in making Janus monolayers due to the significant energy barriers that prevent their growth by typical methods.

In 2015, the ORNL group discovered that pulsed laser deposition could convert molybdenum diselenide to molybdenum disulfide. At the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL, pulsed laser deposition is a critical technique for developing quantum materials.

"We speculated that by controlling the kinetic energy of atoms, we could implant them in a monolayer, but we never thought we could achieve such exquisite control," Geohegan said. "Only with atomistic computational modeling and electron microscopy at ORNL were we able to understand how to implant just a fraction of a monolayer, which is amazing."

The method uses a pulsed laser to vaporize a solid target into a hot plasma, which expands from the target toward a substrate. This study used a selenium target to produce a beam-like plasma of clusters of two to nine selenium atoms, which were directed to strike pre-grown tungsten disulfide monolayer crystals.

The key to success in creating two-faced monolayers is bombarding the crystals with a precise amount of energy. Throw a bullet at a door, for example, and it bounces off the surface. But shoot the door and the bullet rips right through. Implanting selenium clusters into only the top of the monolayer is like shooting a door and having the bullet stop in its surface.

"It's not easy to tune your bullets," Geohegan said. The fastest selenium clusters, with energies of 42 electron volts (eV) per atom, ripped through the monolayer; they needed to be controllably slowed to implant into the top ply.

"What's new from this paper is we are using such low energies," said Lin. "People never explored the regime below 10 eV per atom because commercial ion sources only go down to 50 eV at best and don't allow you to choose the atoms you would like to use. However, pulsed laser deposition lets us choose the atoms and explore this energy range fairly easily."

The key to tuning the kinetic energy, Lin said, is to controllably slow the selenium clusters by adding argon gas in a pressure-controlled chamber. Limiting the kinetic energy restricts the penetration of atomically thin layers to specific depths. Injecting a pulse of atom clusters at low energy temporarily crowds and displaces atoms in a region, causing local defects and disorder in the crystal lattice. "The crystal then ejects the extra atoms to heal itself and recrystallizes into an orderly lattice," Geohegan explained. Repeating this implantation and healing process over and over can increase the selenium fraction in the top layer to 100% to complete the formation of a high-quality Janus monolayer.

Controllably implanting and recrystallizing 2D materials in this low-kinetic-energy regime is a new road to making 2D quantum materials. "Janus structures can be made in mere minutes at the low temperatures that are required for semiconductor electronic integration," Lin said, paving the way for production-line manufacturing. Next the researchers want to try making Janus monolayers on flexible substrates useful in mass production, such as plastics.

To prove that they had achieved a Janus structure, Chenze Liu and Gerd Duscher, both of the University of Tennessee, Knoxville, and Matthew Chisholm of ORNL used high-resolution electron microscopy to examine a tilted crystal to identify which atoms were in the top layer (selenium) versus the bottom layer (sulfur).

However, understanding how the process replaced sulfur atoms with larger selenium atoms -- an energetically difficult feat -- was a challenge. ORNL's Mina Yoon used supercomputers at the Oak Ridge Leadership Computing Facility, a DOE Office of Science user facility at ORNL, to calculate the energy dynamics of this uphill battle from theory using first principles.

Further, the scientists needed to understand how energy transferred from clusters to lattices to create local defects. With molecular dynamics simulations, ORNL's Eva Zarkadoula showed clusters of selenium atoms collide with the monolayer at different energies and either bounce off it, crash through it or implant in it -- consistent with the experimental results.

To further confirm the Janus structure, ORNL researchers proved structures had predicted characteristics by calculating their vibrational modes and conducting Raman spectroscopy and X-ray photoelectron spectroscopy experiments.

To understand that the plume was made of clusters, scientists used a combination of optical spectroscopy and mass spectrometry to measure molecular masses and velocities. Taken together, theory and experiment indicated 3 to 5 eV per atom was the optimal energy for precise implantation to form Janus structures.

####

About Oak Ridge National Laboratory
The DOE Office of Science supported the synthesis science, electron microscopy, and computational studies. This research was conducted as a user project at the Center for Nanophase Materials Sciences and used resources of the Oak Ridge Leadership Computing Facility; both are DOE Office of Science User Facilities at ORNL.

UT-Battelle manages ORNL for DOE's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

For more information, please click here

Contacts:
Dawn Levy

865-202-9465

@ORNL

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The title of the paper is "Low-energy implantation into transition metal dichalcogenide monolayers to form Janus structures.":

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Quantum Physics

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Memory Technology

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project