Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)

Schematic crystal structures and electronic localization functions (ELFs) of 2D, 1D, and soft 1D Bi2Se3, Sb2Se3 and BiSeI, respectively. Schematic diagrams and corresponding crystal structures of (a, d) 2D slabs in Bi2Se3, (b, e) 1D chain in Sb2Se3 and (c, f) 1D chain with migration of halogens in BiSeI. The crystal structures of Bi2Se3, Sb2Se3and BiSeI viewed along the c direction are given in (g-i), respectively. (j-l) The projected ELF along the chain. The isosurface level of ELF is 0.9.

CREDIT
©Science China Press
Schematic crystal structures and electronic localization functions (ELFs) of 2D, 1D, and soft 1D Bi2Se3, Sb2Se3 and BiSeI, respectively. Schematic diagrams and corresponding crystal structures of (a, d) 2D slabs in Bi2Se3, (b, e) 1D chain in Sb2Se3 and (c, f) 1D chain with migration of halogens in BiSeI. The crystal structures of Bi2Se3, Sb2Se3and BiSeI viewed along the c direction are given in (g-i), respectively. (j-l) The projected ELF along the chain. The isosurface level of ELF is 0.9. CREDIT ©Science China Press

Abstract:
The low thermal transport properties are important for applications in thermoelectrics and thermal barrier coatings. Nowadays, the strategies to acquire low thermal conductivity in bulk materials include multi-scale defect (atomic, nano- and meso-scale), heavy molecular weight, complex crystal structure, larger unit cell and strong anharmonicity.

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I)

Beijing, China | Posted on June 19th, 2020

In a recent article in Science China Materials, Prof. Li-Dong Zhao from Beihang University and co-workers proposed a new strategy to search intrinsically low thermal conductivity in one-dimensional crystal structure. By using the first-principles calculations and experimental synthesis, they found a sort of material with extremely low thermal conductivity, namely BiSeX (X= Br, I) with one-dimensional chain structure. The mechanisms behind the low thermal conductivity were revealed from the aspect of crystal structure, by neutron powder-diffraction measurements and temperature tunable aberration-corrected scanning transmission electron microscopy (STEM).

To elucidate the origins of ultralow thermal conductivity, the authors make comparisons with several analogues that exhibit cubic- (3D), layer- (2D) and chain-like (1D) crystal structures and find that the thermal conductivity shows a decreasing trend from 3D, 2D to 1D (Fig. 1), which is due to the chemical bonding strength between the low-dimensional structure becoming progressively weaker and weaker.

"Based on these guidelines, we found that the chemical bonding along the chain further weakened with added halogen atom", said Prof. Zhao. Therefore, the chemical bondings of BiSeX along all three crystallographic directions are weaker than in other compounds (Fig. 2), showing a quasi-0D crystal structure.

Different from the ultrahigh thermal conductivity diamond (> 2000 W m-1 K-1) with strong covalent bond between carbon atoms, the phonon transport in bismuth selenohalides was significantly suppressed. As a result, they exhibit extremely low thermal conductivity. "The thermal conductivity of BiSeI at 573 K reaches ~0.27 W m-1 K-1, which is close to the theoretical minimum value", emphasized by Prof. Zhao.

These findings open up a prospect of achieving low thermal conductivity materials in one-dimensional chain-containing bulk structure with potential applications in the fields of thermal barrier coatings, thermoelectric materials, etc.

###

This work was published online in Science China Materials and highlighted by Science (Science, 368 (2020) 1325.) (Fig. 3).

This work was supported by the National Key Research and Development Program of China (2018YFA0702100, 2018YFB0703600), the National Natural Science Foundation of China (51772012, 51632005), the National Science Foundation for Distinguished Young Scholars (51925101), Shenzhen Peacock Plan team (KQTD2016022619565991), Beijing Natural Science Foundation (JQ18004), China Postdoctoral Science Foundation Grant (2019M650429) and 111 Project (B17002).

####

For more information, please click here

Contacts:
Li-Dong Zhao

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: D. Wang, et al. "Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure". Science China Materials (2020):

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Thin films

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Tools

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project