Home > Press > Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes
![]() |
Abstract:
Oil & gas, automotive, chemical processing and other industries that deal with the harshest heat and chemical conditions are now able to utilize high-performance fluoroelastomers with graphene nanotubes that guarantee continuous production operations with less frequent shut-downs for maintenance. A new nanotube solution has entered the market, paving the way for reducing filler content and improving polymer stability in aggressive atmospheres.
Small, but critical, components such as seals, O-rings, gaskets, and hoses are exposed to the harshest environments in oil & gas operations or as parts of vehicle engines. Fluoroelastomers are often the top choice for these tiny rubber parts due to the requirement to resist synthetic oils, corrosive fumes, chemicals, ultra-high temperatures and pressure. Depending on the final application requirements, conductive compounds based on carbon black or reinforced formulations based on silica are two types of widely used FKM formulations for the most vital sectors.
New technology has been developed to further improve both of these FKM formulas, which can help to reduce material consumption and save maintenance costs. A solution based on TUBALL graphene nanotubes, produced by OCSiAl, allows manufacturers to enhance all mechanical properties including prolonged durability, and also provides electrical conductivity to FKM.
In carbon black-based FKM formulation, it has been proven that introducing as low as 3% of graphene nanotube concentrate can neutralize carbon black’s negative impacts on flexibility and elasticity, which otherwise result in hardening and a reduced life cycle for the final products. Nanotubes make it possible to achieve electrical resistivity of 5 Ohm*cm, and at the same time to improve tensile and tear parameters by 30–40% without a reduction in elasticity, according to data after heat and fuel C aging.
In silica-based FKM, the addition of graphene nanotubes results in increased resistance to synthetic fuels and heat, improved tensile strength and M100 (or modulus 100) by up to 30%, increased abrasion resistance by up to 20% and enhanced tear strength by up to 90%. Moreover, tests have proven that these improvements to mechanical properties are maintained throughout extensive heating. Additionally, graphene nanotube-enhanced, silica-based FKMs offer electrical conductivity below 10 Ohm*cm.
These advancements of high value not only in oil & gas and auto industry, but also in some specific applications, such as in production areas with automated systems and sensors where color and electrostatics are required for identification of parts by robots.
The unique properties offered by graphene nanotubes give more freedom to FKM compounders to upgrade rubber formulations by reducing filler content and improving polymer stability in austere environments, which results in economic benefits to a number of key industries.
####
For more information, please click here
Contacts:
Anastasia Zirka
PR & Advertising Manager
+7 913 989 9239
Copyright © OCSiAl Group
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Graphene/ Graphite
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Automotive/Transportation
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Leading the charge to better batteries February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |