Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use

Partners of the European research project HandheldOCT at the kick-off meeting in Vienna. Image: Medical University of Vienna
Partners of the European research project HandheldOCT at the kick-off meeting in Vienna. Image: Medical University of Vienna

Abstract:
The Medical University of Vienna is heading a European research project, in which engineers and scientists are developing a handheld device for mobile ophthalmic care based on low-cost and miniaturized photonic chip technology. The novel photonic integrated technology is expected to bring Optical Coherence Tomography (OCT) from stationary clinical use to broader, mobile use in ophthalmic care.

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use

Karlsruhe, Germany | Posted on May 7th, 2020

Over the next five years, a research team consisting of engineers and scientists from European research institutions and from industry will be developing a handheld ophthalmic imaging device for mobile, low-cost OCT. It is based on novel photonic integrated technology and will be tested together with medical doctors from the Vienna General Hospital.

The goal is to enable point of care applications of a well-established imaging modality for the diagnosis and treatment monitoring of important eye diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma that are together the worldwide leading cause for blindness. This is achieved by dramatically reducing the size of the diagnostic device and reducing fabrication costs while at the same time increasing the usability and performance of OCT technology for broad applicability. It is expected that this technological jump will improve ophthalmic care, in particular point-of-care diagnostics and diagnostic-driven therapy, and reduce the burden to the health care systems at the same time.

Mobile applications by smaller and cheaper photonic technologies

Just like integrated electronics has opened the door to compact and mobile electronic devices for a wide range of applications, integrated photonics has the potential to enable versatile new applications, e.g. mobile medical imaging. In ophthalmic care, OCT is a standard imaging modality with broad clinical relevance that can benefit from significant size and cost reductions by a high degree of integration. If combined with a high usability enabled by a new performance level, OCT could make the step from a stationary clinical to a point-of-care imaging modality with substantial implications for the eye care of the future, in particular addressing challenges of an aging society.

Engineers and scientists work together with medical doctors

The Medical University of Vienna is leading the project “Handheld optical coherence tomography (HandheldOCT)”, which consists of a consortium with seven partners from four European countries. The project has been awarded a grant of EUR 6 million from Horizon 2020, the EU program for research and innovation.

The project addresses a significant technical challenge and offers a large opportunity by advancing a well-established optical imaging technology for medical care. To evaluate the potential and the usability of the mobile technology, it will be developed jointly in the consortium and assessed by medical doctors and scientists of the Medical University Vienna for benchmarking. The successful evaluation in an established medical application will open the door to OCT’s broad mobile use for 'in-the-field' care and point-of-care, and in the clinical praxis.

Project partners

The project comprises researchers from one university, two research institutions, and four companies. The technological core of the project, the integrated photonic chip, is designed by researchers from AIT and imec and processed in imec’s CMOS Pilot Line. The chip’s packaging and interface adaption are realized by researchers from Tyndall National Institute, which includes the at-chip microfabrication of freeform optics developed by Nanoscribe. Researchers from Innolume develop a novel akinetically tunable light source, representing another key component of the technology. The packaged photonic chip and the light source are integrated in a handheld ophthalmic prototype system developed and realized by Carl Zeiss with support by researchers from the Medical University Vienna. The handheld system requires a high degree of integration and miniaturization of all the optics, mechanics and electronics, meeting the conditions for its clinical evaluation at the Medical University.

####

About Nanoscribe GmbH
The medium-sized company Nanoscribe develops and sells 3D printers and maskless lithography systems for microfabrication as well as specially developed printing materials and application-specific solution sets. The specialist for additive manufacturing of high-precision structures and objects on the nano and microscale was founded in 2007 as a spin-off of the Karlsruhe Institute of Technology (KIT). Today, with more than 70 employees and subsidiaries in China and the USA, Nanoscribe has become the market and technology leader. More than 2,000 users at top universities and innovative industrial companies worldwide benefit from the groundbreaking technology and award-winning solutions for microfabrication.

For more information, please click here

Contacts:
Prof. Wolfgang Drexler
Head of Center for Medical Physics and Biomedical Engineering,
Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, General Hospital Vienna,
Mail:
Phone: +43 1 40400-19860

Copyright © Nanoscribe GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Photonics/Optics/Lasers

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Researchers succeed in controlling quantum states in a new energy range December 13th, 2024

Groundbreaking research unveils unified theory for optical singularities in photonic microstructures December 13th, 2024

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project