Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use

Partners of the European research project HandheldOCT at the kick-off meeting in Vienna. Image: Medical University of Vienna
Partners of the European research project HandheldOCT at the kick-off meeting in Vienna. Image: Medical University of Vienna

Abstract:
The Medical University of Vienna is heading a European research project, in which engineers and scientists are developing a handheld device for mobile ophthalmic care based on low-cost and miniaturized photonic chip technology. The novel photonic integrated technology is expected to bring Optical Coherence Tomography (OCT) from stationary clinical use to broader, mobile use in ophthalmic care.

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use

Karlsruhe, Germany | Posted on May 7th, 2020

Over the next five years, a research team consisting of engineers and scientists from European research institutions and from industry will be developing a handheld ophthalmic imaging device for mobile, low-cost OCT. It is based on novel photonic integrated technology and will be tested together with medical doctors from the Vienna General Hospital.

The goal is to enable point of care applications of a well-established imaging modality for the diagnosis and treatment monitoring of important eye diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR) and glaucoma that are together the worldwide leading cause for blindness. This is achieved by dramatically reducing the size of the diagnostic device and reducing fabrication costs while at the same time increasing the usability and performance of OCT technology for broad applicability. It is expected that this technological jump will improve ophthalmic care, in particular point-of-care diagnostics and diagnostic-driven therapy, and reduce the burden to the health care systems at the same time.

Mobile applications by smaller and cheaper photonic technologies

Just like integrated electronics has opened the door to compact and mobile electronic devices for a wide range of applications, integrated photonics has the potential to enable versatile new applications, e.g. mobile medical imaging. In ophthalmic care, OCT is a standard imaging modality with broad clinical relevance that can benefit from significant size and cost reductions by a high degree of integration. If combined with a high usability enabled by a new performance level, OCT could make the step from a stationary clinical to a point-of-care imaging modality with substantial implications for the eye care of the future, in particular addressing challenges of an aging society.

Engineers and scientists work together with medical doctors

The Medical University of Vienna is leading the project “Handheld optical coherence tomography (HandheldOCT)”, which consists of a consortium with seven partners from four European countries. The project has been awarded a grant of EUR 6 million from Horizon 2020, the EU program for research and innovation.

The project addresses a significant technical challenge and offers a large opportunity by advancing a well-established optical imaging technology for medical care. To evaluate the potential and the usability of the mobile technology, it will be developed jointly in the consortium and assessed by medical doctors and scientists of the Medical University Vienna for benchmarking. The successful evaluation in an established medical application will open the door to OCT’s broad mobile use for 'in-the-field' care and point-of-care, and in the clinical praxis.

Project partners

The project comprises researchers from one university, two research institutions, and four companies. The technological core of the project, the integrated photonic chip, is designed by researchers from AIT and imec and processed in imec’s CMOS Pilot Line. The chip’s packaging and interface adaption are realized by researchers from Tyndall National Institute, which includes the at-chip microfabrication of freeform optics developed by Nanoscribe. Researchers from Innolume develop a novel akinetically tunable light source, representing another key component of the technology. The packaged photonic chip and the light source are integrated in a handheld ophthalmic prototype system developed and realized by Carl Zeiss with support by researchers from the Medical University Vienna. The handheld system requires a high degree of integration and miniaturization of all the optics, mechanics and electronics, meeting the conditions for its clinical evaluation at the Medical University.

####

About Nanoscribe GmbH
The medium-sized company Nanoscribe develops and sells 3D printers and maskless lithography systems for microfabrication as well as specially developed printing materials and application-specific solution sets. The specialist for additive manufacturing of high-precision structures and objects on the nano and microscale was founded in 2007 as a spin-off of the Karlsruhe Institute of Technology (KIT). Today, with more than 70 employees and subsidiaries in China and the USA, Nanoscribe has become the market and technology leader. More than 2,000 users at top universities and innovative industrial companies worldwide benefit from the groundbreaking technology and award-winning solutions for microfabrication.

For more information, please click here

Contacts:
Prof. Wolfgang Drexler
Head of Center for Medical Physics and Biomedical Engineering,
Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, General Hospital Vienna,
Mail:
Phone: +43 1 40400-19860

Copyright © Nanoscribe GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Photonics/Optics/Lasers

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project