Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter

Abstract:
Controlling the interactions at the interface of a magnetic/topological insulator heterostructure is an outstanding challenge with implications in fundamental science and technology. A research led by the ICN2 Atomic Manipulation and Spectroscopy Group and the Physics and Engineering of Nanodevices Group, in collaboration with the Supramolecular Nanochemistry and Materials Group, the CFM-San Sebastián, ETH Zurich, ISM-Trieste and ALBA Synchrotron, has shown that ligands from metal-organic molecules can be used to tailor the properties of these interfaces. The results are presented in ACS Nano.

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter

Barcelona, Spain | Posted on May 1st, 2020

A topological insulator (TI) is a material that behaves as an insulator in its interior but whose surface contains exotic conducting states, therefore allowing electrons to move only in the surface of the material. The most peculiar property of these surface electrons is that their spin is locked to the direction of motion, so that it can be manipulated by electrical currents.

Interfacing TIs with a magnetic material can give rise to phenomena such as the current-induced spin to charge interconversion and the emergence of dissipationless spin currents, which can be exploited in novel spintronic devices, metrology or in electron-spin based quantum information applications. However, this union of TI and magnetic material into a so-called heterostructure is a complex process that often prevents the control of the special phenomena described before. In particular, when the TI is interfaced directly with metallic ferromagnets, the strong interaction between the two materials leads to undesired effects such as the loss of magnetic properties or the suppression of the topological surface states.

By contrast, metal-organic molecules, organic molecules hosting a (magnetic) metallic ion, have been envisioned as candidates to develop magnetic/TI heterostructures in which interfacial interactions are tailored by the organic ligand. This is precisely what researchers from the ICN2, in collaboration with CFM-San Sebastián, ETH Zurich, ISM-Trieste and ALBA Synchrotron, have demonstrated. Published in ACS Nano, this research has been led by ICREA Prof. Aitor Mugarza, Leader of the Atomic Manipulation and Spectrocopy Group and ICREA Prof. Sergio O. Valenzuela, Leader of the Physics and Engineering of Nanodevices Group. They have had the collaboration of ICREA Prof. Daniel Maspoch, Leader of the Supramolecular Nanochemistry and Materials Group, which has synthesised the metal-organic molecule. The first author of the work is former ICN2’s PhD student Marc G. Cuxart.

In this work, the researchers have shown for the first time that it is possible to tune the interfacial interaction without quenching the molecular spin and the topological surface state of the TI by choosing suitable organic ligands. In particular, they found that CoTBrPP and CoPc monolayers (metal-organic molecules) adsorbed on Bi2Te3 (topological insulator) form robust interfaces where electronic interactions can be tuned without strongly perturbing the intrinsic properties of each constituent. Their conclusions are supported by structural, electronic and magnetic information derived from a combination of specialised techniques (STM, ARPES, XMCD and DFT).

####

For more information, please click here

Contacts:
Francisco J. Paños

Copyright © ICN2

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Article reference:

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism/Magnons

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Possible Futures

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Spintronics

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project