Home > Press > Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter
![]() |
Abstract:
Controlling the interactions at the interface of a magnetic/topological insulator heterostructure is an outstanding challenge with implications in fundamental science and technology. A research led by the ICN2 Atomic Manipulation and Spectroscopy Group and the Physics and Engineering of Nanodevices Group, in collaboration with the Supramolecular Nanochemistry and Materials Group, the CFM-San Sebastián, ETH Zurich, ISM-Trieste and ALBA Synchrotron, has shown that ligands from metal-organic molecules can be used to tailor the properties of these interfaces. The results are presented in ACS Nano.
A topological insulator (TI) is a material that behaves as an insulator in its interior but whose surface contains exotic conducting states, therefore allowing electrons to move only in the surface of the material. The most peculiar property of these surface electrons is that their spin is locked to the direction of motion, so that it can be manipulated by electrical currents.
Interfacing TIs with a magnetic material can give rise to phenomena such as the current-induced spin to charge interconversion and the emergence of dissipationless spin currents, which can be exploited in novel spintronic devices, metrology or in electron-spin based quantum information applications. However, this union of TI and magnetic material into a so-called heterostructure is a complex process that often prevents the control of the special phenomena described before. In particular, when the TI is interfaced directly with metallic ferromagnets, the strong interaction between the two materials leads to undesired effects such as the loss of magnetic properties or the suppression of the topological surface states.
By contrast, metal-organic molecules, organic molecules hosting a (magnetic) metallic ion, have been envisioned as candidates to develop magnetic/TI heterostructures in which interfacial interactions are tailored by the organic ligand. This is precisely what researchers from the ICN2, in collaboration with CFM-San Sebastián, ETH Zurich, ISM-Trieste and ALBA Synchrotron, have demonstrated. Published in ACS Nano, this research has been led by ICREA Prof. Aitor Mugarza, Leader of the Atomic Manipulation and Spectrocopy Group and ICREA Prof. Sergio O. Valenzuela, Leader of the Physics and Engineering of Nanodevices Group. They have had the collaboration of ICREA Prof. Daniel Maspoch, Leader of the Supramolecular Nanochemistry and Materials Group, which has synthesised the metal-organic molecule. The first author of the work is former ICN2’s PhD student Marc G. Cuxart.
In this work, the researchers have shown for the first time that it is possible to tune the interfacial interaction without quenching the molecular spin and the topological surface state of the TI by choosing suitable organic ligands. In particular, they found that CoTBrPP and CoPc monolayers (metal-organic molecules) adsorbed on Bi2Te3 (topological insulator) form robust interfaces where electronic interactions can be tuned without strongly perturbing the intrinsic properties of each constituent. Their conclusions are supported by structural, electronic and magnetic information derived from a combination of specialised techniques (STM, ARPES, XMCD and DFT).
####
For more information, please click here
Contacts:
Francisco J. Pańos
Copyright © ICN2
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Magnetism/Magnons
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Spintronics
Quantum materials: Electron spin measured for the first time June 9th, 2023
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |