Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new way to fine-tune exotic materials: Thin, stretch and clamp: Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties

Researchers from SLAC National Accelerator Laboratory and Stanford University made a super-thin, flexible membrane from a normally brittle oxide by growing it on a surface coated with a compound that dissolves in water. When the coating was dissolved, the membrane (dark red) floated free. Stretching this membrane revealed how strain affects the material's electronic properties.

CREDIT
Greg Stewart/SLAC National Accelerator Laboratory
Researchers from SLAC National Accelerator Laboratory and Stanford University made a super-thin, flexible membrane from a normally brittle oxide by growing it on a surface coated with a compound that dissolves in water. When the coating was dissolved, the membrane (dark red) floated free. Stretching this membrane revealed how strain affects the material's electronic properties. CREDIT Greg Stewart/SLAC National Accelerator Laboratory

Abstract:
One way to change the properties of a material is to stretch it just a wee bit, so its atoms are farther apart but the bonds between them don't break. This extra distance affects the behavior of electrons, which determine whether the material is an insulator or a conductor of electricity, for instance.

A new way to fine-tune exotic materials: Thin, stretch and clamp: Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties

Sanford, CA | Posted on April 2nd, 2020

But for an important class of complex oxide materials, stretching doesn't work so well; they're as brittle as ceramic coffee cups and would break.

Scientists at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have now found a way around this problem for a complex oxide known as LCMO. They created a super-thin, flexible membrane from the normally brittle material, used micromanipulators to stretch it on a tiny apparatus and glued it in place to preserve the stretch.

By applying gentle heat to melt the glue, they could release and stretch the same transparent membrane again and again and watch it flip from being an insulator to a conductor and back again. Stretching also changed its magnetic properties.

"We can really stretch and strain these things dramatically, by up to 8%," said Harold Hwang, a professor at SLAC and Stanford and an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES). "This opens a whole new world of possibilities that will have an impact beyond this particular study."

The research team reported its findings in Science today.

New ways to float free and stretch

LCMO, or lanthanum calcium manganese oxide, is what's known as a quantum material because its electrons behave in unconventional and often surprising ways. Scientists want to be able to control and fine-tune this behavior for a new generation of electronics with applications in power transmission, transportation, computing, sensors and detectors.

Thin films of quantum materials are generally grown on the surface of another material. Four years ago, Hwang's group reported an easy way to detach those delicate layers so they could be studied in new ways.

One of the researchers who worked on that study, Seung Sae Hong, led this one as well. He used the new method to create and free small pieces of LCMO that were thinner than ever before - less than 20 nanometers thick. They were nearly transparent and surprisingly flexible.

Directly stretching such a small, fragile scrap would be difficult, but Hong got around that problem by putting it on a thin polymer film - kind of like a plastic bag from a grocery store - where it stuck of its own volition.

Then he clamped the polymer film on each of its four sides and used a micromanipulator to pull and stretch it - sometimes in one direction, sometimes in both directions at once. Once the LCMO was stretched, its polymer backing could be glued to another surface and taken to another instrument for examination with X-rays.

Flipping electronic states

"The experiments were quite tedious and difficult," said Hong, who is now an assistant professor at the University of California, Davis. "We'd look at the film, warm it to soften the glue and relax the stretch, manipulate it in some other way, freeze it in place and look at it again."

The researchers were able to directly measure the spacing between atoms and confirm that it increased with stretching. They also measured the electrical resistance of the LMCO and discovered that stretching flipped it from a metallic state that readily conducts electricity to an insulating state, which doesn't. Applying a strong magnetic field changed the magnetic state of the material and also flipped it back into being a metal.

"As a scientific tool this is really exciting," Hong said. "It opens opportunities for mechanically manipulating broad classes of materials in ways we couldn't do before. And it gives us ideas for how we might design flexible materials for electronic devices, including sensors and detectors that measure very small changes."

###

Major funding for this study came from the DOE Office of Science and the Gordon and Betty Moore Foundation's Emergent Phenomena in Quantum Systems Initiative. Researchers from Northwestern University and the University of Duisburg-Essen in Germany contributed theoretical modeling for the study. Calculations were performed using the National Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation; the CARBON Cluster at DOE's Argonne National Laboratory; and the MagnitUDE supercomputer at the University of Duisburg-Essen.

####

About SLAC National Accelerator Laboratory
SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
Glennda Chui

510-507-2766

@SLAClab

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Seung Sae Hong et al., Science, 5 April 2020 (10.1126/science.aax9753):

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Sensors

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project