Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tokai scientists create the world's first electronic skin-based sensor for heatstroke detection

Abstract:
Scientists at Tokai university have successfully fabricated the glue-free in situ heatstroke detection sensor using ultra-flexible freestanding nanosheet. The device which can continuously measure the skin sweat pH to predict the heatstroke have been reported in ACS Sensors.

Tokai scientists create the world's first electronic skin-based sensor for heatstroke detection

Hiratsuka,, Japan | Posted on March 17th, 2020

Main Content

Historically heatstroke is a serious illness that can potentially damage many victims every year. When the body temperature rises over 40 deg Celsius for a long time lead to severe neurological disorders, even death. Open-air workers, older people, infants and athletes are at the highest risk of heatstroke. The usage of commercial on the body temperature sensor, electrocardiogram, electromyography confined to the laboratory. A simple device capable of detecting heatstroke by individuals is still lacking. A simple skin sweat pH monitoring would provide extensive information about your body but performing measurement directly on the skin is challenging to reveal the real-time body conditions.

We have seen a rapid growth wearable sensor platform for personalized healthcare and fitness monitoring. The sensors team head Prof.Kazuyoshi Tsuchiya, Department of Precision Engineering and Dr.Ganesh Kumar Mani, JSPS Post-Doctoral fellow, Micro/Nano Technology Center had come up with an idea inspired by temporary tattoo to create the on-body electronic skin based pH sensors.

The complete electronic skin sensor consists of an electrolyte free reference electrode (Ag/AgIO3) and Sb/Sb2O3 based thin film working electrodes. The researchers used the simple spin coating method to produce the freestanding nanosheet, and the sensing electrodes were deposited by sputtering.

The nanosheet material was chosen as polydimethylsiloxane (PDMS) due to its thermal stability and excellent biocompatibility. The key material for this electronic skin-based pH sensor is Ag/AgIO3 discovered by Prof. Tsuchiya, who is the team head for microneedle and nanosheet based sensors at Micro/Nano Technology Center.

The most exciting part about this process is to dissolve the sacrificing layer, which is made up of cellulose acetate and release the nanosheet with sensing electrode without any damage. Finally, the sensor was tested with perspired human sweat for real-time investigation and proved that the measurement value is much similar to the commercial pH meter. The researchers also performed the temperature-dependent performance on the human body and declared difference in potential difference due to temperature was minimum. Furthermore, mechanical testing of the nanosheet was tested with twisting and bending of the nanosheet which is placed on an artificial arm, found there visible crack or damage was observed.

The scientists state someday these electronic skin sensor patches could be seen in most of the people like the mobile phones present now. Dr.Ganesh says this nanosheet sensor technology would be the next frontier in personalized point of care technology. When different kind of nanosheet stacked, a variety of new sensors can be produced for a wide range of applications, Prof.Tsuchiya said.

In the next step, they plan to examine the adhesiveness with skin for its long-time usage, more improved sensitivity and to integrate with multiple analyte sensors. This progress will help them better understand the strategies of using such sensors in the real-world environment.

The preparation of ultrathin polymer thin films was developed initially by Prof.Youske Okamura, Department of Applied Chemistry, School of Engineering and it can be applied to the internal organs without the use of glue. Aiming for this freestanding nanosheet technology to be used worldwide, Tune Co., Ltd was founded in 2018 by young researchers from Micro/Nano Technology Center, Tokai University. Prof.Rio Kita, Director of Micro/Nano Technology Center, Department of Physics, lead the entire team with a perfect vision.

The research was supported by the Japan Society for the Promotion of Science (P19076, 19H04021).

####

For more information, please click here

Contacts:
Dr. Ganesh Kumar Mani Ph.D.
JSPS Post-Doctoral Fellow
Micro/Nano Technology Center
Tokai University, Shonan Campus, Building No:12 (First Floor)
4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292
Japan
Tel: +81 (0) ​​463 58 1211​​ (Ex 4791)​
Mobile: +81-70-4198-5591 WhatsApp: +91-9629864428

Copyright © Tokai University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more insight into the research described, readers are invited to access the paper on ACS Sensors:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Sensors

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project