Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient

Abstract:
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient

Columbus, OH | Posted on December 5th, 2019

The study, published earlier this month in the journal Physical Review X, shows a fundamental aspect of how the semiconductor, beta gallium oxide, controls electricity.

"Our job is to try to identify why this material, called beta gallium oxide, acts the way it acts at the fundamental level," said Jared Johnson, lead author of the study and a graduate research associate at The Ohio State University Center for Electron Microscopy and Analysis. "It is important to know why this material has the properties it has, and how it acts as a semiconductor, and we wanted to look at it at the atomic level -- to see what we could learn."

Scientists have known about beta gallium oxide for about 50 years, but only in the last several years has it become an intriguing option for engineers looking to build more reliable, more efficient high-powered technologies. The material is especially well-suited for devices used in extreme conditions, such as in the defense industry. The team has been studying beta gallium oxide for its potential to provide high-density power.

For this study, the CEMAS team, overseen by Jinwoo Hwang, assistant professor of materials science and engineering, examined beta gallium oxide under a powerful electron microscope, to see the way the material's atoms interacted. What they saw confirmed a theory first hypothesized about a decade ago by theorists: Beta gallium oxide has a form of imperfection in its structure, something the team refers to as "point defects," which are unlike any defects previously seen in other materials.

Those defects matter: For example, they could be places where electricity could be lost in transit among electrons. With proper manipulation, the defects can also provide opportunities for unprecedented control of the material's properties. But understanding the defects must come before we learn how to control them.

"It is very meaningful that we could actually directly observe these point defects, these abnormalities within the crystal lattice," Johnson said. "And these point defects, these oddballs within the lattice structure, lower the energy stability of the structure."

A lower energy stability means that the material might have some flaws that need addressing in order to conduct electricity efficiently, Johnson said, but they don't mean beta gallium oxide would not necessarily be a good semiconductor. The defects can in fact behave favorably to conduct electricity - if scientists can control them.

"This material has very good properties for those high-powered technologies," he said. "But it is important that we're seeing this on the fundamental level -- we're almost understanding the science behind this material and how it works, because this defect, these abnormalities, could affect the way it functions as a semiconductor."

###

This work was funded by the U.S. Department of Defense Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Laura Arenschield

614-292-9475

Jared Johnson, ; Jinwoo Hwang,
@osuresearch

Copyright © Ohio State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Possible Futures

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project